Impulse breakdown mechanism based on discharge propagation process under non-uniform electric field in air

Author(s):  
Katsuki Hotta ◽  
Takeshi Iwata ◽  
Hiroki Kojima ◽  
Naoki Hayakawa ◽  
Norihito Yanagita ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2676 ◽  
Author(s):  
Marek Florkowski ◽  
Dariusz Krześniak ◽  
Maciej Kuniewski ◽  
Paweł Zydroń

This paper describes a correlation of partial discharge phase-resolved patterns with an optical imaging performed in a non-uniform electric field configuration. The influence of different dielectric barrier materials, placed on the plane electrode, on the discharge propagation and surface landing was investigated. The investigations were focused on the corona at positive polarity of AC high voltage. It was found that the initial positive corona stage is similar for all cases whereas the discharge propagation and surface landing strongly depends on the barrier material properties. The observed streamer discharge modes have been described by the geometrical measures such as stem length, stretch of a discharge profile on the dielectric barrier surface and an hemispherical envelope of discharge filaments. Since various dielectrics reveal different properties of charge accumulation and surface neutralization, the charge memory effect may be visible and can be related to the ability to create and sustain of additional electric field component. It may refer to subsequent discharges as well as to conditions faced at the voltage polarity reversal. The correspondence between different forms of phase-resolved patterns have been associated with the modes of streamer discharges observed by optical imaging. Presented methodology poses huge potential for both scientific investigations on underlying discharge phenomena as well as on the application in future diagnostic systems of HV insulation.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6653
Author(s):  
Mohamed Lamine Amrani ◽  
Slimane Bouazabia ◽  
Issouf Fofana ◽  
Fethi Meghnefi ◽  
Marouane Jabbari ◽  
...  

In this contribution, a mathematical model allowing for the prediction of the AC surface arc propagation on polluted insulators under non-uniform electric field is proposed. The approach is based on the experimental concept of Claverie and Porcheron. The proposed model, which makes it possible to reproduce the surface electric discharge, includes a condition for arrest of the propagating discharge. The electric field at the tip of the discharge is the key parameter governing its random propagation. A finite element approach allows for mapping of the electric field distribution while the discharge propagation process is simulated in two dimensions. The voltage drop along the arc discharge path at each propagation step is also taken into account. The simulation results are validated against experimental data, taking into account several electro-geometric parameters (distance between electrodes, pollution conductivity, radius of high-voltage electrode, length of the plane electrode). Good agreement between computed and experimental results were obtained for various test configurations.


1997 ◽  
Vol 117 (11) ◽  
pp. 1109-1114
Author(s):  
Yoshiyuki Suda ◽  
Kenji Mutoh ◽  
Yosuke Sakai ◽  
Kiyotaka Matsuura ◽  
Norio Homma

2008 ◽  
Vol 128 (12) ◽  
pp. 1445-1451
Author(s):  
Takanori Yasuoka ◽  
Tomohiro Kato ◽  
Katsumi Kato ◽  
Hitoshi Okubo

Sign in / Sign up

Export Citation Format

Share Document