breakdown mechanism
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
June Young Kim ◽  
Igor D Kaganovich ◽  
Lee Hyo-Chang

Abstract Ionization gas sensors are a ubiquitous tool that can monitor desired gases or detect abnormalities in real time to protect the environment of living organisms or to maintain clean and/or safe environment in industries. The sensors’ working principle is based on the fingerprinting of the breakdown voltage of one or more target gases using nanostructured materials. Fundamentally, nanomaterial-based ionization-gas sensors operate within a large framework of gas breakdown physics; signifying that an overall understanding of the gas breakdown mechanism is a crucial factor in the technological development of ionization gas sensors. Moreover, many studies have revealed that physical properties of nanomaterials play decisive roles in the gas breakdown physics and the performance of plasma-based gas sensors. Based on this insight, this review provides a comprehensive description of the foundation of both the gas breakdown physics and the nanomaterial-based ionization-gas-sensor technology, as well as introduces research trends on nanomaterial-based ionization gas sensors. The gas breakdown is reviewed, including the classical Townsend discharge theory and modified Paschen curves; and nanomaterial-based-electrodes proposed to improve the performance of ionization gas sensors are introduced. The secondary electron emission at the electrode surface is the key plasma–surface process that affects the performance of ionization gas sensors. Finally, we present our perspectives on possible future directions.


Author(s):  
Dinghe Liu ◽  
Yuwen Huang ◽  
Zeyulin Zhang ◽  
Dazheng Chen ◽  
Qian Feng ◽  
...  

Abstract To increase their breakdown voltage, Ga2O3 Schottky barrier diodes (SBDs) with a beveled field plate were designed based on TCAD platform simulations. The small-angle beveled field plate can effectively alleviate the electric field concentration effect. The breakdown voltage of Ga2O3 SBDs can reach 1217 V with the SiO2 dielectric and a small-angle (1°) beveled field plate. However, the breakdown mechanism is the early breakdown of the dielectric layer. TO further increase the breakdown voltage, the replacement of SiO2 with a high-k dielectric (Al2O3 and HfO2) can transfer the breakdown location into the Ga2O3 drift layer. By combining the beveled small-angle design and the high-k dielectric, the device demonstrates a Baliga’s figure of merit of 2.94 GW/cm2 and breakdown voltage of 3108V.


2021 ◽  
Vol 1976 (1) ◽  
pp. 012046
Author(s):  
Xin Huang ◽  
Siguang Zong ◽  
Tao Liu ◽  
Shanyong Liang
Keyword(s):  

2021 ◽  
Vol 28 (4) ◽  
pp. 042110
Author(s):  
Amanda M. Loveless ◽  
Adam M. Darr ◽  
Allen L. Garner

2021 ◽  
Author(s):  
Sophie Bodek ◽  
Douglas J. Jerolmack

Abstract. As rocks are transported, they primarily undergo two breakdown mechanisms: chipping and fragmentation. Chipping occurs at relatively low collision energies typical of bed-load transport, and involves shallow cracking; this process rounds river pebbles in a universal manner. Fragmentation involves catastrophic breakup by fracture growth in the bulk – a response that occurs at high collision energies such as rock falls – and produces angular shards. Despite its geophysical significance, the transition from chipping to fragmentation is not well studied. Indeed, most models implicitly assume that impact erosion of pebbles and bedrock is governed by fragmentation rather than chipping. Here we experimentally delineate the boundary between chipping and fragmentation by examining the mass and shape evolution of concrete particles in a rotating drum. Attrition rate should be a function of both impact energy and material strength; here we keep the former constant, while systematically varying the latter. For sufficiently strong particles, chipping occurred and was characterized by the following: daughter products were significantly smaller than the parent; attrition rate was independent of material strength; and particles experienced monotonic rounding toward a spherical shape. As strength decreased, fragmentation became more significant: mass of daughter products became larger and more varied; attrition rate was inversely proportional to material strength; and shape evolution fluctuated and became non monotonic. Our results validate a previously proposed probabilistic model for impact attrition, and indicate that bedrock erosion models predicated on fragmentation failure need to be revisited. We suggest that the shape of natural pebbles may be utilized to deduce the breakdown mechanism, and infer past transport environments.


Sign in / Sign up

Export Citation Format

Share Document