Influence of space charge by primary and secondary streamers on breakdown mechanism under non-uniform electric field in air

Author(s):  
Takuya Kitamura ◽  
Hiroki Kojima ◽  
Naoki Hayakawa ◽  
Kinya Kobayashi ◽  
Tatsuro Kato ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 809 ◽  
Author(s):  
Hongxia Yin ◽  
Yingcao Cui ◽  
Yanhui Wei ◽  
Chuncheng Hao ◽  
Qingquan Lei

The semi-conductive layer located between the wire core and the insulation layer in high voltage direct current (HVDC) cable plays a vital role in uniform electric field and affecting space charges behaviors. In this work, the research idea of adding ionic conductive particles to semi-conductive materials to improve the conductive network and reduce the energy of the moving charge inside it and to suppress charge injection was proposed. Semi-conductive composites doped with different La0.8Sr0.2MnO3 (LSM) contents were prepared. Resistivity at different temperatures was measured to investigate the positive temperature coefficient (PTC) effect. Pulse electro-acoustic (PEA) method and thermal-stimulation depolarization currents (TSDC) tests of the insulation layers were carried out. From the results, space charge distribution and TSDC currents in the insulation samples were analyzed to evaluate the inhibitory effect on space charge injection. When LSM content is 6 wt. %, the experimental results show that the PTC effect of the specimen and charge injection are both being suppressed significantly. The maximum resistivity of it is decreased by 53.3% and the insulation sample has the smallest charge amount, 1.85 × 10−7 C under 10 kV/mm—decreased by 40%, 3.6 × 10−7 C under 20 kV/mm—decreased by 45%, and 6.42 × 10−7 C under 30 kV/mm—decreased by 26%. When the LSM content reaches 10 wt. %, the suppression effect on the PTC effect and the charge injection are both weakened, owing to the agglomeration of the conductive particles inside the composites which leads to the interface electric field distortion and results in charge injection enhancement.


2017 ◽  
Vol 137 (11) ◽  
pp. 608-613 ◽  
Author(s):  
Masayuki Fujii ◽  
Masanori Yamada ◽  
Masumi Fukuma ◽  
Yoshinobu Murakami ◽  
Masayuki Nagao

Author(s):  
Sina Jomeh ◽  
Mina Hoorfar

The effect of electrophoresis (i.e., applying uniform electric field to use the natural charge of particles) on the transport of a sample (like biomolecules) in active microreactors is numerically investigated. Navier-Stokes equations are solved along with the equations of electrostatics, species mass transport in the buffer and chemical reaction kinetics at reactive surfaces. Unlike previous studies, in which the effect of the charge of the sample bulk on the electric field has been neglected (i.e., the assumption of electroneutrality), here space charge density is assumed to be nonzero. As a result, the governing equations become fully coupled. The efficiency of the microreactor device is analyzed for two different geometries commonly used in biomolecule separation (i.e., open channel and microcylinders). It is shown that the electroneutrality assumption can drastically influence the final adsorbed concentration depending on the device configuration. Average adsorbed surface concentration is compared for each case as a measure of the performance of the device. The plots depicting the influence of the electric field and nonzero space charge density on the bulk concentration profile and the velocity field are also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document