Granular interval type-2 membership functions and modeling application on a nonlinear system

Author(s):  
Cenk Ulu ◽  
Mujde Guzelkaya ◽  
Ibrahim Eksin
Author(s):  
Yang Chen ◽  
Jiaxiu Yang

In recent years, fuzzy identification based on system identification theory has become a hot academic topic. Interval type-2 fuzzy logic systems (IT2 FLSs) have become a rising technology. This paper designs a type of Nagar-Bardini (NB) structure-based singleton IT2 FLSs for fuzzy identification problems. The antecedents of primary membership functions of IT2 FLSs are chosen as Gaussian type-2 primary membership functions with uncertain standard deviations. Then, the back propagation algorithms are used to tune the parameters of IT2 FLSs according to the chain rule of derivation. Compared with the type-1 fuzzy logic systems, simulation studies show that the proposed IT2 FLSs can obtain better abilities of generalization for fuzzy identification problems.


Author(s):  
Tsung-Chih Lin ◽  
Yi-Ming Chang ◽  
Tun-Yuan Lee

This paper proposes a novel fuzzy modeling approach for identification of dynamic systems. A fuzzy model, recurrent interval type-2 fuzzy neural network (RIT2FNN), is constructed by using a recurrent neural network which recurrent weights, mean and standard deviation of the membership functions are updated. The complete back propagation (BP) algorithm tuning equations used to tune the antecedent and consequent parameters for the interval type-2 fuzzy neural networks (IT2FNNs) are developed to handle the training data corrupted by noise or rule uncertainties for nonlinear system identification involving external disturbances. Only by using the current inputs and most recent outputs of the input layers, the system can be completely identified based on RIT2FNNs. In order to show that the interval IT2FNNs can handle the measurement uncertainties, training data are corrupted by white Gaussian noise with signal-to-noise ratio (SNR) 20 dB. Simulation results are obtained for the identification of nonlinear system, which yield more improved performance than those using recurrent type-1 fuzzy neural networks (RT1FNNs).


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 206 ◽  
Author(s):  
Ivette Miramontes ◽  
Juan Guzman ◽  
Patricia Melin ◽  
German Prado-Arechiga

In this paper, the optimal designs of type-1 and interval type-2 fuzzy systems for the classification of the heart rate level are presented. The contribution of this work is a proposed approach for achieving the optimal design of interval type-2 fuzzy systems for the classification of the heart rate in patients. The fuzzy rule base was designed based on the knowledge of experts. Optimization of the membership functions of the fuzzy systems is done in order to improve the classification rate and provide a more accurate diagnosis, and for this goal the Bird Swarm Algorithm was used. Two different type-1 fuzzy systems are designed and optimized, the first one with trapezoidal membership functions and the second with Gaussian membership functions. Once the best type-1 fuzzy systems have been obtained, these are considered as a basis for designing the interval type-2 fuzzy systems, where the footprint of uncertainty was optimized to find the optimal representation of uncertainty. After performing different tests with patients and comparing the classification rate of each fuzzy system, it is concluded that fuzzy systems with Gaussian membership functions provide a better classification than those designed with trapezoidal membership functions. Additionally, tests were performed with the Crow Search Algorithm to carry out a performance comparison, with Bird Swarm Algorithm being the one with the best results.


Sign in / Sign up

Export Citation Format

Share Document