Adaptive sampling rule for ranking-and-selection problem

Author(s):  
Ruijing Wu ◽  
Shaoxuan Liu ◽  
Jun Luo
Author(s):  
Natalja Kosareva ◽  
Edmundas Kazimieras Zavadskas ◽  
Aleksandras Krylovas ◽  
Stanislav Dadelo

In this study KEmeny Median Indicator Rank Accordance (KEMIRA) method is applied for solving personnel ranking and selection problem when there are two subgroups of evaluating criteria. Each stage of KEMIRA method illustrated with the examples. In the first stage Kemeny median method is applied to generalize experts’ opinions for setting criteria priorities. Medians were calculated for all experts opinions generalization and for experts majority opinions generalization. In the second stage criteria weights calculated and alternatives ranking accomplished simultaneously by Indicator Rank Accordance method. The obtained solutions compared with the results received in previous work of authors.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
E. Jack Chen ◽  
Min Li

A solution to the ranking and selection problem of determining a subset of size containing at least of the best from normal distributions has been developed. The best distributions are those having, for example, (i) the smallest means, or (ii) the smallest variances. This paper reviews various applicable algorithms and supplies the operating constants needed to apply these solutions. The constants are computed using a histogram approximation algorithm and Monte Carlo integration.


2004 ◽  
Vol 09 (01) ◽  
Author(s):  
Teresa León ◽  
Vicente Liern ◽  
Paulina Marco ◽  
Enriqueta Vercher ◽  
José Vicente Segura

2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


Sign in / Sign up

Export Citation Format

Share Document