Total electron content (TEC) over equatorial ionosphere using Malaysia virtual reference station (VRS) data

Author(s):  
Norsuzila Ya'acob ◽  
Azita Laily Yusof ◽  
Norbaiti Sidik ◽  
Azlina Idris ◽  
Darmawaty Mohd Ali ◽  
...  
2021 ◽  
Vol 13 (5) ◽  
pp. 1006
Author(s):  
Ivan Toman ◽  
David Brčić ◽  
Serdjo Kos

This research represents a contribution to the theory on the coupling of the volcanic activity and the ionospheric dynamics, represented by total electron content (TEC) patterns and their behaviour. The ionospheric response to the activity of the Etna volcano has been analysed using global navigation satellite system (GNSS)-derived TEC values, employing data from International GNSS Service (IGS) reference station near the volcano and on two distant IGS locations. Volcanic activity has been modelled using volcanic radiative power (VRP) data obtained by the Middle InfraRed Observation of Volcanic Activity (MIROVA) system. The estimated minimal night TEC values have been averaged over defined index days of the VRP increase. During the analysed period of 19 years, the volcano activity was categorised according to pre-defined criteria. The influence of current space weather and short-term solar activity on TEC near the volcano was systematically minimised. The results showed mean/median TEC increases of approximately +3 standard deviations from the overall mean values, with peak values placed approximately 5 days before the VRP increase and followed by general TEC depletion around the time of the actual volcanic activity increase. Additionally, TEC oscillation pattern was found over the volcano site with a half-period of 6.25 days. The main interpretation of results indicates that the volcanic activity has modified the ionospheric dynamics within the nearby ionospheric region before the actual VRP increase, and that the residual impact in the volcano’s surrounding area refers to terrestrial endogenous processes and air–earth currents. Those changes can be detected during criteria predefined in the research: during quiet space weather conditions, observing night-time TEC values and within the limits of low short-term solar influence.


1973 ◽  
Vol 21 (5) ◽  
pp. 713-720 ◽  
Author(s):  
R.G. Rastogi ◽  
R.P. Sharma ◽  
V. Shodhan

GPS Solutions ◽  
2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Weijun Lu ◽  
Guanyi Ma ◽  
Qingtao Wan ◽  
Jinghua Li ◽  
Xiaolan Wang ◽  
...  

Abstract In computerized ionospheric tomography (CIT) with ground-based GNSS, the voxels without satellite-receiver ray traversing cannot be reconstructed directly. We present a CIT algorithm based on virtual reference stations (VRSs), called VRS–CIT, to decrease the number of unilluminated voxels and improve the precision of the estimated ionospheric electron density (IED). The VRSs are set at the nodes of grids with a 0.5° × 0.5° resolution in longitude and latitude. We generate the virtual observations with the observations from nearby six or three stations selected according to azimuths and distances. The generation utilizes multi-quadric surface fitting with six stations and triangular linear interpolation with three stations. With the virtual observations added, the IED distribution is reconstructed by the multiplicative algebraic reconstruction technique with the initial values obtained from IRI-2016. The performance of VRS–CIT is examined by using the data from 127 GNSS stations located in 24–46° N and 122–146° E to derive the IED every 30 min. The study focuses on April 29, 2014, with the adaptability of VRS–CIT analyzed by 12 days, evenly distributed around equinoxes and solstices of 2014. The accuracy of the virtual observation is about 1 TECU. Comparing to that derived from CIT with only real observations, the unsolvability of VRS–CIT declined by 4–12% for the whole region, and for the main area, the improvement can be up to 70%. Taking two IED profiles from radio occultation as reference measurements, the mean absolute error (MAE) of IED by VRS–CIT decreases by 6.88% and 8.43%, respectively. Comparing with slant total electron content (STEC) extracted from five additional GNSS stations, the MAE and the root mean square error of the estimated STEC can be reduced up to 17.24% and 33.81%, respectively.


Sign in / Sign up

Export Citation Format

Share Document