Control of MMC converter integrated in HVDC link based on quadratic optimization approach

Author(s):  
Mohamed Moez Belhaouane ◽  
Frederic Colas ◽  
Francois Gruson ◽  
Naceur Benhadj Braiek ◽  
Xavier Guillaud
2018 ◽  
Vol 72 (2) ◽  
pp. 219-240 ◽  
Author(s):  
Seyedmohammadhossein Hosseinian ◽  
Dalila B. M. M. Fontes ◽  
Sergiy Butenko

Author(s):  
Andrés Gómez ◽  
Oleg A. Prokopyev

We consider the best subset selection problem in linear regression—that is, finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We are primarily concerned with alternatives to cross-validation methods that do not require data partitioning and involve a range of information criteria extensively studied in the statistical literature. We show that the problem of interest can be modeled using fractional mixed-integer optimization, which can be tackled by leveraging recent advances in modern optimization solvers. The proposed algorithms involve solving a sequence of mixed-integer quadratic optimization problems (or their convexifications) and can be implemented with off-the-shelf solvers. We report encouraging results in our computational experiments, with respect to both the optimization and statistical performance. Summary of Contribution: This paper considers feature selection problems with information criteria. We show that by adopting a fractional optimization perspective (a well-known field in nonlinear optimization and operations research), it is possible to leverage recent advances in mixed-integer quadratic optimization technology to tackle traditional statistical problems long considered intractable. We present extensive computational experiments, with both synthetic and real data, illustrating that the new fractional optimization approach is orders of magnitude faster than existing approaches in the literature.


2020 ◽  
Vol 54 (6) ◽  
pp. 1703-1722 ◽  
Author(s):  
Narges Soltani ◽  
Sebastián Lozano

In this paper, a new interactive multiobjective target setting approach based on lexicographic directional distance function (DDF) method is proposed. Lexicographic DDF computes efficient targets along a specified directional vector. The interactive multiobjective optimization approach consists in several iteration cycles in each of which the Decision Making Unit (DMU) is presented a fixed number of efficient targets computed corresponding to different directional vectors. If the DMU finds one of them promising, the directional vectors tried in the next iteration are generated close to the promising one, thus focusing the exploration of the efficient frontier on the promising area. In any iteration the DMU may choose to finish the exploration of the current region and restart the process to probe a new region. The interactive process ends when the DMU finds its most preferred solution (MPS).


2016 ◽  
Vol 18 (1) ◽  
pp. 114
Author(s):  
She Wei ◽  
Huang Huang ◽  
Guan Chunyun ◽  
Chen Fu ◽  
Chen Guanghui

Sign in / Sign up

Export Citation Format

Share Document