Homomorphic Filtering Approach for Eliminating Multiplicative Noise in a Monochromatic Based Images

Author(s):  
Arman Bernard G. Santos ◽  
Marmelo V. Abante ◽  
Neil P. Balba ◽  
Rejan L. Tadeo ◽  
Marygin E. Sarmiento
Author(s):  
Adi Mora Lubis ◽  
Nelly Astuti Hasibuan ◽  
Imam Saputra

Digital imagery is a two-dimensional image process through a digital computer that is used to manipulate and modify images in various ways. Photos are examples of two-dimensional images that can be processed easily. Each photo in the form of a digital image can be processed through a specific software. In the water environment, the light factor greatly influences the results of the quality of the image obtained. With the deepening of underwater shooting, the results obtained will be the darker the quality of the underwater image. . uneven lighting and bluish tones. One of the factors that influence the recognition results in pattern recognition is the quality of the image that is inputted. The image acquired from the source does not always have good quality. The process of repairing digital images that experience interference in lighting. The lighting repair process uses homomorphic filtering and uses contrast striching and will compare the quality of both methods and test to prove the results of image quality between homomorphic filtering and contrast streching. Until later the results of both methods can be seen which is better. homomorphic filtering and contrast stretching can produce image improvements with pretty good performance.Keywords: Digital Image, Underwater Image, Homomorphic Filtering, Contrast Streching, Matlab R2010a


2014 ◽  
Author(s):  
Matthias Hartung ◽  
Roman Klinger ◽  
Matthias Zwick ◽  
Philipp Cimiano

2012 ◽  
Vol 38 (3) ◽  
pp. 444-451 ◽  
Author(s):  
Xu-Dong WANG ◽  
Xiang-Chu FENG ◽  
Lei-Gang HUO

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1329
Author(s):  
Lev Ryashko ◽  
Dmitri V. Alexandrov ◽  
Irina Bashkirtseva

A problem of the noise-induced generation and shifts of phantom attractors in nonlinear dynamical systems is considered. On the basis of the model describing interaction of the climate and vegetation we study the probabilistic mechanisms of noise-induced systematic shifts in global temperature both upward (“warming”) and downward (“freezing”). These shifts are associated with changes in the area of Earth covered by vegetation. The mathematical study of these noise-induced phenomena is performed within the framework of the stochastic theory of phantom attractors in slow-fast systems. We give a theoretical description of stochastic generation and shifts of phantom attractors based on the method of freezing a slow variable and averaging a fast one. The probabilistic mechanisms of oppositely directed shifts caused by additive and multiplicative noise are discussed.


Sign in / Sign up

Export Citation Format

Share Document