Loosely coupled visual odometry aided inertial navigation system using discrete extended Kalman filter with pairwise time correlated measurements

Author(s):  
Nilesh S. Gopaul ◽  
Jianguo Wang ◽  
Baoxin Hu
2018 ◽  
Vol 7 (2.7) ◽  
pp. 642
Author(s):  
V Appala Raju ◽  
P Vasundhara ◽  
V ChandraKanth Reddy ◽  
A Sai Aiswarya

This paper deals with the methods performing state estimation .that is position and orientation of Unmanned Arial Vehicle (UAV) using GPS, gyro, accelerometers and magnetometer sensors. Various methods are designed for position and orientation measurements of UAV. In this paper we proposed extended kalman filter based inertial navigation system using quaternions and 3D magnetometer. Initially we load UAV truth data from a file ,generate noisy UAV sensor measurements and perform UAV state estimation and display UAV state estimate results with proposed method compares with previously exited method extended  kalman filter based altitude and heading reference system using quaternion and 3D magnetometer simulation .Results shows that EKF-INS method gives better position and orientation of UAV.  


2013 ◽  
Vol 367 ◽  
pp. 528-535
Author(s):  
Otman Ali Awin

This paper deals with the integrated navigation system based on fusion of data from Strap Down Inertial Navigation System (SDINS) and from Global Position System (GPS). In order to increase the accuracy and reliability of navigation algorithms, these two different systems are combined. The navigation system that be analyzed is basically of INS type while GPS corrective data are obtained less frequently and these are treated as noisy measurements in an extended Kalman filter scheme. The simulation of whole system (SDINS/GPS integrated system with Kalman filter) was modeled using MATLAB package, SIMULINK© tool. The proper choice of Kalman filter parameters had taken to minimize navigation errors for a typical medium range flight scenario (Simulated test trajectory and real trajectory of vehicle motion). A prototype of a SDINS installed on a moving platform in the laboratory to collected data by many experiments to verification our SIMULINK models.


Author(s):  
Mohammad Durali ◽  
Ali Nabi ◽  
Amir Fazeli

The aim of this paper is to design an inertial navigation system (INS) for use in a geometry pipe inspection gauge, capable of measuring pipeline movements and producing the line’s 3D map with a reasonable accuracy. A suitable reference path was generated as a design platform. Solving the navigation equations and compensating for the errors, by using extended Kalman filter (EKF) approach, the INS path was generated and its position errors in all three directions were considered. Divergence problems due to far apart GPS position observations, was overcome by defining suitable threshold for the variances of the estimated errors.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Sign in / Sign up

Export Citation Format

Share Document