strapdown inertial navigation system
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 62)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Sergii Pogorilov ◽  
Valerij Havin

In modern aerospace technology, strapdown inertial navigation systems (SINS) are widely used, using fiber-optic (FOG) or ring laser (CLG) gyroscopes. During the operation of such systems, the sensitivity axes are rotated relative to the basic coordinate system. The resulting angles between the axes of the base coordinate system and the axes of sensitivity of the navigation system (non-orthogonality) are one of the factors leading to an increase in the measurement errors of the device, which affects the measurement accuracy. During operation, the system is affected by vibrations of various nature, the impact of which can contribute to the appearance of non-orthogonality. The purpose of this work is to determine the maximum permissible vibration amplitudes affecting the SINS body according to the permissible values ​​of the deviation of the FOG sensitivity axes for two variants of the SINS layout. An approach to determining the permissible amplitudes of an external harmonic impact on the unit of a strapdown inertial navigation system based on fiber-optic or ring laser gyroscopes is considered. A design scheme, mathematical and finite element models for calculating natural frequencies and forced oscillations of a strapdown inertial navigation system unit have been developed. In various frequency ranges, numerical calculations have determined the boundary values ​​of the amplitudes of the external harmonic impact on the base of specific configurations of the SINS assembly. It has been established that dangerous states take place in the region of the 1st natural frequency of the system, as well as near higher frequencies. Comparison of the results for design options 1 and 2 allows us to conclude that in order to weaken the effect of vibrations on the accuracy of the SINS unit, it is advisable that the lowest natural vibration frequencies for the SINS assembly be as high as possible (more than 1000 Hz). Key words: vibration; fiber optic gyroscope; strapdown inertial navigation system; finite element method; natural frequencies and modes of vibration.


Author(s):  
Nguyen Trong Khuyen

The strap-down inertial navigation system (SINS) is widely used and becoming very important in many areas, especially in the arms industry when the GPS signal is lost or not reliable. To ensure the precision of the system, in addition to optimizing the algorithm for the strap-down inertial navigation system, the testing, and adjusting of the SINS system when installed on vehicles also play a vital role. In the article, a method of displaying SINS data on a digital map is proposed. Furthermore, the article also proposes a method to assess the influence of misalignment angles on the navigation accuracy and how to estimate and correct them.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 224
Author(s):  
Yang Shen ◽  
Pengjiang Wang ◽  
Weixiong Zheng ◽  
Xiaodong Ji ◽  
Hai Jiang ◽  
...  

The strapdown inertial navigation system can provide the navigation information for the boom-type roadheader in the unmanned roadway tunneling working face of the coal mine. However, the complex vibration caused by the cutting process of the boom-type roadheader may result in significant errors of its attitude and position measured by the strapdown inertial navigation system. Thus, an error compensation method based on the vibration characteristics of the roadheader is proposed in this paper. In order to further analyze the angular and linear vibration of the fuselage, as the main vibration sources of the roadheader, the dynamic model of the roadheader is formulated based on the cutting load. Following that, multiple sub-samples compensation algorithms for the coning and sculling errors are constructed. Simulation experiments were carried out under different subsample compensation algorithms, different coal and rock characteristics, and different types of roadheader. The experimental results show that the proposed error compensation algorithm can eliminate the effect of the angular and linear vibration on the measurement accuracy. The coning and sculling error of the strapdown inertial navigation system can reduce at least 52.21% and 42.89%, respectively. Finally, a strapdown inertial navigation error compensation accuracy experiment system is built, and the validity and superiority of the method proposed in this paper are verified through calculation and analysis of the data collected on the actual tunneling work face.


Sign in / Sign up

Export Citation Format

Share Document