scholarly journals Unsupervised Features for Facial Expression Intensity Estimation Over Time

Author(s):  
Maren Awiszus ◽  
Stella Grasshof ◽  
Felix Kuhnke ◽  
Jorn Ostermann
2021 ◽  
Vol 7 ◽  
pp. e736
Author(s):  
Olufisayo Ekundayo ◽  
Serestina Viriri

Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM).


2020 ◽  
Vol 8 (2) ◽  
pp. 68-84
Author(s):  
Naoki Imamura ◽  
Hiroki Nomiya ◽  
Teruhisa Hochin

Facial expression intensity has been proposed to digitize the degree of facial expressions in order to retrieve impressive scenes from lifelog videos. The intensity is calculated based on the correlation of facial features compared to each facial expression. However, the correlation is not determined objectively. It should be determined statistically based on the contribution score of the facial features necessary for expression recognition. Therefore, the proposed method recognizes facial expressions by using a neural network and calculates the contribution score of input toward the output. First, the authors improve some facial features. After that, they verify the score correctly by comparing the accuracy transitions depending on reducing useful and useless features and process the score statistically. As a result, they extract useful facial features from the neural network.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xueping Su ◽  
Meng Gao ◽  
Jie Ren ◽  
Yunhong Li ◽  
Matthias Rätsch

With the continuous development of economy, consumers pay more attention to the demand for personalization clothing. However, the recommendation quality of the existing clothing recommendation system is not enough to meet the user’s needs. When browsing online clothing, facial expression is the salient information to understand the user’s preference. In this paper, we propose a novel method to automatically personalize clothing recommendation based on user emotional analysis. Firstly, the facial expression is classified by multiclass SVM. Next, the user’s multi-interest value is calculated using expression intensity that is obtained by hybrid RCNN. Finally, the multi-interest value is fused to carry out personalized recommendation. The experimental results show that the proposed method achieves a significant improvement over other algorithms.


Sign in / Sign up

Export Citation Format

Share Document