Structure and properties of proton exchange waveguides on Z cut of lithium niobate crystal fabricated in molten benzoic acid with the addition of lithium benzoate

Author(s):  
Vladimir I. Kichigin ◽  
Igor V. Petukhov ◽  
Sergey S. Mushinsky ◽  
Vladimir A. Oborin ◽  
Aleksandr M. Minkin ◽  
...  
2021 ◽  
Vol 11 (21) ◽  
pp. 9853
Author(s):  
Roman Ponomarev ◽  
Yuri Konstantinov ◽  
Maxim Belokrylov ◽  
Ivan Lobach ◽  
Denis Shevtsov

This work is devoted to the study of the pyroelectric effect on the properties of optical waveguides formed in a lithium niobate crystal by proton exchange. In the present work, we studied the cessation effect of the radiation channeling during thermocycling of Y-splitters samples. We examined the spectral dependence of optical losses on the wavelength using an optical spectrum analyzer. The results demonstrate that in the range of 1530–1570 nm, all wavelengths are suppressed equally. The optical frequency domain reflectometry shows that the increase of optical losses is observed along the entire waveguide, but not only at the Y-splitting point, as supposed earlier.


2019 ◽  
Vol 9 (21) ◽  
pp. 4585
Author(s):  
Roman Sergeevitch Ponomarev ◽  
Denis Igorevitch Shevtsov ◽  
Pavel Victorovitch Karnaushkin

It is shown that the termination of the channeling of the fundamental radiation mode in the waveguide can be observed upon heating of an optical integrated circuit based on proton exchange channel waveguides formed in a lithium niobate single crystal. This process is reversible, but restoration of waveguide performance takes tens of minutes. The effect of the waveguide disappearance is observed upon rapid heating (5 K/min) from a low temperature (minus 40 °C). This effect can lead to a temporary failure of navigation systems using fiber optic gyroscopes with modulators based on a lithium niobate crystal.


Author(s):  
Roman Ponomarev ◽  
Yuri Konstantinov ◽  
Ivan Lobach ◽  
Maxim Belokrylov ◽  
Denis Shevtsov

This work is devoted to the study of the pyroelectric effect on the qualities of optical waveguides formed in a lithium niobate crystal by proton exchange. In the present work, we investigated the cessation effect of the radiation channeling during thermocycling of Y-splitters samples. We examined the spectral dependence of optical losses on a wavelength using an optical spectrum analyzer. The results demonstrate that in the range of 1530–1570 nm, all wavelengths are suppressed equally. The optical reflectometry method in the frequency domain shows that the increase of optical losses is observed along the entire waveguide, but not only at the Y-distribution point, as supposed earlier.


Author(s):  
Alexey V. Sosunov ◽  
◽  
Roman S. Ponomarev ◽  
Anton A. Zhuravlev ◽  
Sergey S. Mushinsky ◽  
...  

This work is devoted to the study of the drift of the operating point of integrated-optical circuits based on proton-exchange waveguides in lithium niobate crystal with a recovered structure of the near-surface layer. Recovered of the damaged near-surface layer of lithium niobate wafer was carried out using pre-annealing at temperature of 500 °C. Drift of operating point is characterized by a constant change in the optical output power of the integrated-optical circuits when a bias voltage is applied to the electrodes or temperature changes. Recovered of the damaged near-surface layer of lithium niobate wafer leads to a decrease in the short-term and long-term drifts of the operating point of integrated-optical circuits. Crystal structure factor was investigated on the drift of operating point of integrated-optical circuits based on lithium niobate crystal.


2015 ◽  
Vol 476 (1) ◽  
pp. 84-93 ◽  
Author(s):  
S. S. Mushinsky ◽  
A. M. Minkin ◽  
I. V. Petukhov ◽  
V. I. Kichigin ◽  
D. I. Shevtsov ◽  
...  

Author(s):  
Roman Ponomarev ◽  
Denis Shevtsov ◽  
Pavel Karnaushkin

It is shown that the termination of the channeling of the fundamental radiation mode in the waveguide can be observed upon heating of an optical integrated circuit based on proton exchange channel waveguides formed in a lithium niobate single crystal. This process is reversible, but restoration of waveguide performance takes tens of minutes. The effect of the waveguide disappearance is observed upon rapid heating (5 °C/min) from a low temperature (minus 40 °C). This effect can lead to a temporary failure of navigation systems using fiber optic gyroscopes with modulators based on a lithium niobate crystal


Sign in / Sign up

Export Citation Format

Share Document