Swept frequency response test for condition monitoring of power transformer

Author(s):  
N. Al-Khayat ◽  
L. Haydock
Author(s):  
Tingyu Xin ◽  
Clive Roberts ◽  
Paul Weston ◽  
Edward Stewart

Railway pantographs are used around the world for collecting electrical energy to power railway vehicles from the overhead catenary. Faults in the pantograph system degrade the quality of the contact between the pantograph and catenary and reduce the reliability of railway operations. To maintain the pantographs in a good working condition, regular inspection tasks are carried out at rolling stock depots. The current pantograph inspections, in general, are only effective for the detection of major faults, providing limited incipient fault detection or fault diagnosis capabilities. Condition monitoring of pantographs has the potential to improve pantograph performance and reduce maintenance costs. As a first step in the realisation of practical pantograph condition monitoring, a laboratory-based pantograph test rig has been developed to gain an understanding of pantograph dynamic behaviours, particularly when incipient faults are present. In the first work of this kind, dynamic response data have been acquired from a number of pantographs that have allowed fault detection and diagnosis algorithms to be developed and verified. Three tests have been developed: (i) a hysteresis test that uses different excitation speeds, (ii) a frequency response test that uses different excitation frequencies, and (iii) a novel changing gradient test. Verification tests indicate that the hysteresis test is effective in detecting and diagnosing pneumatic actuator and elbow joint faults. The frequency response test is able to monitor the overall degradation in the pantograph. The changing gradient test provides fault detection and diagnosis in the pantograph head suspension and pneumatic actuator. The test rig and fault detection and diagnosis algorithms are now being developed into a depot-based prototype together with a number of industrial partners.


Author(s):  
Guo-Ming Ma ◽  
Yunpeng Liu ◽  
Yabo Li ◽  
Xiaozhou Fan ◽  
Ce Xu ◽  
...  

The sweep frequency response analysis is extensively used technique for detect hidden fault and condition monitoring of power transformer. The operation is administered by supply a coffee voltage signal of varying frequencies to the transformer windings and measuring both the input and output signals. These two signals give the specified response of the ratio is named the transfer function of the transformer from which both the magnitude and phase are often obtained. Frequency response is change as measured by SFRA techniques may indicate a phase transition inside the transformer, then causes of fault identified and investigation is required for root cause analysis.


Sign in / Sign up

Export Citation Format

Share Document