The Self-powered RFID Sensor System for Power Transformer Condition Monitoring

Author(s):  
Wang Jian ◽  
Zhu Mengzhao ◽  
Zhu Wenbing ◽  
Gu Zhaoliang ◽  
Wang Xuelei ◽  
...  
Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


Author(s):  
Aripriharta Aripriharta ◽  
Muladi Muladi ◽  
Nandang Mufti ◽  
ilham ari elbaith Zaeni ◽  
I Made Wirawan ◽  
...  

A new circuit model of the self-powered device for heart rate measurement is presented in this paper. This device consists of piezoelectric energy harvester (PEH), power management circuit (PMC) with energy storage, microcontroller, Photoplethysmography (PPG) sensor, and Wi-Fi module. The PEH is placed under the insole to harvest the pressure energy from human foot-step to generate ac power. In our model, a PEH is represented by sine voltage source, where its parameters were taken from experiments with 20 volunteers. The PMC is simplified by a switch with gain δ placed in series with the main circuit. The model of the main circuit is RC elements in parallel, where C is the capacitance of the storage device, and R is the equivalent parallel resistance of the microcontroller, PPG sensor, and Wi-Fi modules, respectively. The value of R depends on the power and current absorbed by those modules during sleep, deep sleep, sense, and transmit modes which collected from the datasheet. Finally, the proposed circuit model of the self-powered device was built and simulated in SPICE. The simulation results were compared with the laboratory experiment using commercial devices. Based on the results, the proposed model had small gaps compared to the real self-powered devices in terms of average current, voltage, power and efficiency.


2017 ◽  
Vol 28 (15) ◽  
pp. 2023-2035 ◽  
Author(s):  
Tarcísio Marinelli Pereira Silva ◽  
Carlos De Marqui

Piezoelectric materials have been used as sensors and actuators in vibration control problems. Recently, the use of piezoelectric transduction in vibration-based energy harvesting has received great attention. In this article, the self-powered active vibration control of multilayered structures that contain both power generation and actuation capabilities with one piezoceramic layer for scavenging energy and sensing, another one for actuation, and a central substructure is investigated. The piezoaeroelastic finite element modeling is presented as a combination of an electromechanically coupled finite element model and an unsteady aerodynamic model. An electrical circuit that calculates the control signal based on the electrical output of the sensing piezoelectric layer and simultaneously energy harvesting capabilities is presented. The actuation energy is fully supplied by the harvested energy, which also powers active elements of the circuit. First, the numerical predictions for the self-powered active vibration attenuation of an electromechanically coupled beam under harmonic base excitation are experimentally verified. Then, the performance of the self-powered active controller is compared to the performance of a conventional active controller in another base excitation problem. Later, the self-powered active system is employed to damp flutter oscillations of a plate-like wing.


2018 ◽  
Author(s):  
Wiwat Pattarachupong ◽  
Nuttapon Piyakunkiat ◽  
Thongchai Ananwattanasuk ◽  
Thum Sirirattanachatchawan ◽  
Suwin Sompopsart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document