Machine Learning Techniques for Medical Image Processing

Author(s):  
Baidaa Mutasher Rashed ◽  
Nirvana Popescu

The aim of the study is to compare, assess the optimum tools as well as the techniques and advanced features focused on prediction of diabetes diagnosis based on machine learning tactics and diabetic retinopathy using Artificial Intelligence. The literature on data science, Artificial Intelligence (AI) contains important knowledge and understanding of AI entities such as Data science, machine learning, deep learning, Medical image processing, feature extraction, classification techniques, etc. Diabetes diagnosis is a phenomenon that impacts individuals around the globe. Now, with diabetes impacting people from children to the elderly, the out-dated approaches to diabetes diagnosis should be replaced with new, time-saving technologies. There's several studies carried out by researchers to recognise and predict diabetes. Here plenty of classifiers in machine learning can be used, such as KNN, Random Tree, etc.They can save time and get more precise outcome when using these techniques to predict diabetes. Diabetic retinopathy (DR) is a typical disorder of diabetic disease that induces vision-impacting lesions in the retina. It also can turn to visual impairment if it is not addressed early. DR therapy only helps vision. Deep learning has in recent times being one of the most widely used approaches that has accomplished higher outcomes in so many fields, especially in the analysing and identification of medical image classification. In medical image processing, convolutional neural networks (CNN) using transfer learning are commonly used as a deep learning approach and they are incredibly beneficial. Key words: Diab


2021 ◽  
Vol 7 (8) ◽  
pp. 124
Author(s):  
Kostas Marias

The role of medical image computing in oncology is growing stronger, not least due to the unprecedented advancement of computational AI techniques, providing a technological bridge between radiology and oncology, which could significantly accelerate the advancement of precision medicine throughout the cancer care continuum. Medical image processing has been an active field of research for more than three decades, focusing initially on traditional image analysis tasks such as registration segmentation, fusion, and contrast optimization. However, with the advancement of model-based medical image processing, the field of imaging biomarker discovery has focused on transforming functional imaging data into meaningful biomarkers that are able to provide insight into a tumor’s pathophysiology. More recently, the advancement of high-performance computing, in conjunction with the availability of large medical imaging datasets, has enabled the deployment of sophisticated machine learning techniques in the context of radiomics and deep learning modeling. This paper reviews and discusses the evolving role of image analysis and processing through the lens of the abovementioned developments, which hold promise for accelerating precision oncology, in the sense of improved diagnosis, prognosis, and treatment planning of cancer.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Majid Amirfakhrian ◽  
Mahboub Parhizkar

AbstractIn the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.


Sign in / Sign up

Export Citation Format

Share Document