Design of Finite-Time Attitude Control System for Reentry Vehicles Based on Extended Observer

Author(s):  
Dongzi Guo ◽  
Naigang Cui ◽  
Guoxin Qu ◽  
Xiaodong Wang
2013 ◽  
Vol 446-447 ◽  
pp. 1141-1145
Author(s):  
Rui Min Jiang ◽  
Jun Zhou ◽  
Jian Guo Guo

A variable structure attitude control system design method that guarantees the finite-time stability is proposed for hypersonic vehicle attitude control. According to the characteristics of the hypersonic vehicle longitudinal attitude model, it is considered to comprise attack angle control loop and angular rate control loop. The attack angle controller and pitch angular rate controller based on variable structure control are designed respectively which ensure the finite-time stability. The finite-time stability of the whole attitude control system has been proved .The simulation results illustrated that the proposed attitude controller has good rapidity and robustness.


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

2020 ◽  
Vol 28 (10) ◽  
pp. 2192-2202
Author(s):  
Feng WANG ◽  
◽  
Shi-bo NIU ◽  
Cheng-fei YUE ◽  
Fan WU ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4905
Author(s):  
Angel Porras-Hermoso ◽  
Daniel Alfonso-Corcuera ◽  
Javier Piqueras ◽  
Elena Roibás-Millán ◽  
Javier Cubas ◽  
...  

This paper presents the development of the UPMSat-2 sun sensor, from the design to on-orbit operation. It also includes the testing of the instrument, one of the most important tasks that needs to be performed to operate a sensor with precision. The UPMSat-2 solar sensor has been designed, tested, and manufactured at the Universidad Politécnica de Madrid (UPM) using 3D printing and COTS (photodiodes). The work described in this paper was carried out by students and teachers of the Master in Space Systems (Máster Universitario en Sistemas Espaciales—MUSE). The solar sensor is composed of six photodiodes that are divided into two sets; each set is held and oriented on the satellite by its corresponding support printed in Delrin. The paper describes the choice of components, the electrical diagram, and the manufacture of the supports. The methodology followed to obtain the response curve of each photodiode is simple and inexpensive, as it requires a limited number of instruments and tools. The selected irradiance source was a set of red LEDs and halogen instead of an AM0 spectrum irradiance simulator. Some early results from the UPMSat-2 mission have been analyzed in the present paper. Data from magnetometers and the attitude control system have been used to validate the data obtained from the sun sensor. The results indicate a good performance of the sensors during flight, in accordance with the data from the ground tests.


Sign in / Sign up

Export Citation Format

Share Document