scholarly journals Design, Ground Testing and On-Orbit Performance of a Sun Sensor Based on COTS Photodiodes for the UPMSat-2 Satellite

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4905
Author(s):  
Angel Porras-Hermoso ◽  
Daniel Alfonso-Corcuera ◽  
Javier Piqueras ◽  
Elena Roibás-Millán ◽  
Javier Cubas ◽  
...  

This paper presents the development of the UPMSat-2 sun sensor, from the design to on-orbit operation. It also includes the testing of the instrument, one of the most important tasks that needs to be performed to operate a sensor with precision. The UPMSat-2 solar sensor has been designed, tested, and manufactured at the Universidad Politécnica de Madrid (UPM) using 3D printing and COTS (photodiodes). The work described in this paper was carried out by students and teachers of the Master in Space Systems (Máster Universitario en Sistemas Espaciales—MUSE). The solar sensor is composed of six photodiodes that are divided into two sets; each set is held and oriented on the satellite by its corresponding support printed in Delrin. The paper describes the choice of components, the electrical diagram, and the manufacture of the supports. The methodology followed to obtain the response curve of each photodiode is simple and inexpensive, as it requires a limited number of instruments and tools. The selected irradiance source was a set of red LEDs and halogen instead of an AM0 spectrum irradiance simulator. Some early results from the UPMSat-2 mission have been analyzed in the present paper. Data from magnetometers and the attitude control system have been used to validate the data obtained from the sun sensor. The results indicate a good performance of the sensors during flight, in accordance with the data from the ground tests.

1990 ◽  
Vol 123 ◽  
pp. 517-520
Author(s):  
C. Imhoff ◽  
R. Pitts ◽  
R. Arquilla ◽  
C. Shrader ◽  
M. Perez ◽  
...  

AbstractThe International Ultraviolet Explorer (IUE) is a geosynchronous orbiting telescope launched by the National Aeronautics and Space Administration (NASA) on January 26, 1978, and operated jointly by NASA and the European Space Agency. The science instrument consists of two spectrographs which span the wavelength range of 1150 to 3200 Å and offer two dispersions with resolutions of 6 Å and 0.2 Å. The spacecraft’s attitude control system originally included an inertial reference package containing 6 gyroscopes for 3-axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target aquisition and offset guiding. Since launch, 4 of the 6 gyroscopes have failed. The current attitude control system utilizes the remaining 2 gyros and a Fine Sun Sensor (FSS) for 3-axis stabilization. When the next gyro fails, a new attitude control system will be uplinked which will rely on the remaining gyro and the FSS for general 3-axis stabilzation. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target aquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

Sign in / Sign up

Export Citation Format

Share Document