A Simulation Study for Three Dimensional Tomographic Field Free Line Magnetic Particle Imaging

Author(s):  
Damla Alptekin Soydan ◽  
Alper Gungor ◽  
Can Baris Top
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastian Draack ◽  
Meinhard Schilling ◽  
Thilo Viereck

Abstract Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.


Sign in / Sign up

Export Citation Format

Share Document