Evaluation of wind power commitment risk in system operation

Author(s):  
Suman Thapa ◽  
Rajesh Karki ◽  
Roy Billinton
Keyword(s):  
Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Yinghao Ma ◽  
Hejun Yang ◽  
Dabo Zhang ◽  
Qianyu Ni

The growing penetration of wind power in a power system brings great challenges to system operation flexibility. For generation planning in presence of high wind power penetration, it is essential to take the operation flexibility of the system into account. Firstly, this paper developed the system operation flexibility metrics through considering the flexibility contribution of thermal generating units (TGUs) by operational state transition. Secondly, a planning model for the bundled wind-thermal-storage generation system (BWTSGS) that considers the operation flexibility constraints is proposed. The planning model is used to determine the power and energy rating of an energy storage system (ESS) as well as the type and number of TGUs. A daily scheduling simulation model of a BWTSGS is proposed to calculate the operation cost for the planning model and consider the sequential operation characteristics of the BWTSGS. Further, in order to accelerate the computation, a wind power sequential clustering technique based on the discrete Fourier transform (DFT) method is developed for improving the computational efficiency. Case studies have been conducted on a 1000-MW wind farm to demonstrate the validity and effectiveness of the proposed model.


Energies ◽  
2014 ◽  
Vol 7 (7) ◽  
pp. 4281-4299 ◽  
Author(s):  
Hyeon-Gon Park ◽  
Jae-Kun Lyu ◽  
YongCheol Kang ◽  
Jong-Keun Park

2015 ◽  
Vol 740 ◽  
pp. 429-432
Author(s):  
Mao Yang ◽  
Gang Du ◽  
Li Sun

As wind power generation rapid development in china, wind power prediction is the key to the system operate safely. Given significant uncertainties involved in wind generation, probabilistic interval forecasting provides a unique solution to estimate and quantify the potential impacts and risks facing system operation with wind penetration beforehand. this paper based on the point forecast, calculate wind power prediction error, formulate the distribution of prediction error, you can get the historical probabilistic distribution of prediction error, use the distribution of error to build the risk assessment of wind power after prediction, give the fluctuate range of predicted values. Probabilistic interval forecasting can obtain the probably of power system operation safely and reliability assessment criterion.


2012 ◽  
Vol 36 (1) ◽  
pp. 69-80 ◽  
Author(s):  
John Olav Giæver Tande ◽  
Magnus Korpås ◽  
Kjetil Uhlen

At many locations with excellent wind conditions the wind farm development is hindered by grid issues. Conservative assumptions are often applied that unnecessarily limits the wind power installation. This paper shows that significantly more wind power can be allowed by taking proper account of the wind power characteristics and facilitating coordinated power system operation. A systematic approach is developed for assessing grid integration of wind farms subject to grid congestions. The method is applied to a case of connecting offshore wind farms to regional grid with hydro generation (380 MW) and loads (75–350 MW). The tie to the main grid is via a corridor with limited capacity (420 MW). With conservative assumptions (i.e. no changes in scheduled hydro generation or control of wind power output) the wind power installation is limited to 115 MW. The system operation is simulated on an hourly basis for multiple years taking into account the stochastic variations of wind speed and hydro inflow as well as the geographical distribution of wind farms. The simulation uses a control strategy for coordinated power system operation that maximises wind penetration. By using the developed methodology the wind power capacity can be increased from 115 MW to at least 600 MW with relatively little income reduction from energy sales compared to a case with unlimited grid capacity. It is concluded that coordinated operation allows for the integration of surprisingly large amounts of wind power. In order to realize the increase in transfer capability, it is essential to take account of the power system flexibility and the stochastic and dispersed nature of wind power. The presented methodology facilitates this and represents a rational approach for power system planning of wind farms.


Author(s):  
Andrej F. Gubina ◽  
Andrew Keane ◽  
Peter Meibom ◽  
Jonathan O'Sullivan ◽  
Oisin Goulding ◽  
...  

2015 ◽  
Vol 30 (3) ◽  
pp. 1359-1368 ◽  
Author(s):  
Michael Negnevitsky ◽  
Dinh Hieu Nguyen ◽  
Marian Piekutowski

Sign in / Sign up

Export Citation Format

Share Document