Atomic electron wave packets studied with a time resolved phase-modulated technique

Author(s):  
B. Broers ◽  
J.F. Christian ◽  
J. Wals ◽  
H.H. Fielding ◽  
J.H. Hoogenraad ◽  
...  
1989 ◽  
Vol 40 (1) ◽  
pp. 485-488 ◽  
Author(s):  
A. ten Wolde ◽  
L. D. Noordam ◽  
A. Lagendijk ◽  
H. B. van Linden van den Heuvell

1988 ◽  
Vol 60 (15) ◽  
pp. 1494-1497 ◽  
Author(s):  
John A. Yeazell ◽  
C. R. Stroud Jr.

1989 ◽  
Vol 40 (9) ◽  
pp. 5040-5043 ◽  
Author(s):  
John A. Yeazell ◽  
Mark Mallalieu ◽  
Jonathan Parker ◽  
C. R. Stroud

2001 ◽  
Vol 169-170 ◽  
pp. 57-62 ◽  
Author(s):  
Takamasa Sakai ◽  
Mamoru Sakaue ◽  
Hideaki Kasai ◽  
Ayao Okiji

1988 ◽  
Vol 61 (18) ◽  
pp. 2099-2101 ◽  
Author(s):  
A. ten Wolde ◽  
L. D. Noordam ◽  
A. Lagendijk ◽  
H. B. van Linden van den Heuvell

Author(s):  
F. Hasselbach ◽  
A. Schäfer

Möllenstedt and Wohland proposed in 1980 two methods for measuring the coherence lengths of electron wave packets interferometrically by observing interference fringe contrast in dependence on the longitudinal shift of the wave packets. In both cases an electron beam is split by an electron optical biprism into two coherent wave packets, and subsequently both packets travel part of their way to the interference plane in regions of different electric potential, either in a Faraday cage (Fig. 1a) or in a Wien filter (crossed electric and magnetic fields, Fig. 1b). In the Faraday cage the phase and group velocity of the upper beam (Fig.1a) is retarded or accelerated according to the cage potential. In the Wien filter the group velocity of both beams varies with its excitation while the phase velocity remains unchanged. The phase of the electron wave is not affected at all in the compensated state of the Wien filter since the electron optical index of refraction in this state equals 1 inside and outside of the Wien filter.


Sign in / Sign up

Export Citation Format

Share Document