Automatic Reconstruction of Polygon Triangulation for Mounted Skeleton Point Cloud

Author(s):  
Pierre-Yves Gagnier ◽  
Herbert Maschner ◽  
Aureliane Gailliegue ◽  
Loic Norgeot ◽  
Charles Dapogny ◽  
...  
Keyword(s):  
Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Chao Wang

In order to improve the accuracy of semantic model intrinsic detection, a skeleton-based high-level semantic model intrinsic self-symmetry detection method is proposed. The semantic analysis of the model set is realized by the uniform segmentation of the model within the same style, the component correspondence of the model between different styles, and the shape content clustering. Based on the results of clustering analysis, for a given three-dimensional (3D) point cloud model, according to the curve skeleton, the skeleton point pairs reflecting the symmetry between the model surface points are obtained by the election method, and the symmetry is extended to the model surface vertices according to these skeleton point pairs. With the help of skeleton, the symmetry of the point cloud model is obtained, and then the symmetry region of point cloud model is obtained by the symmetric correspondence matrix and spectrum method, so as to realize the intrinsic symmetry detection of the model. The experimental results show that the proposed method has the advantages of less time, high accuracy, and high reliability.


Author(s):  
M. S. L. Y. Magtalas ◽  
J. C. L. Aves ◽  
A. C. Blanco

Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a ‘skeleton point cloud’. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


2020 ◽  
Vol 28 (7) ◽  
pp. 1618-1625
Author(s):  
Fu-qun ZHAO ◽  
◽  
Keyword(s):  

2014 ◽  
Vol 24 (3) ◽  
pp. 651-662
Author(s):  
Feng ZENG ◽  
Tong YANG ◽  
Shan YAO

Sign in / Sign up

Export Citation Format

Share Document