An Improved Algorithm for Discrete Logarithm Problem

Author(s):  
Jun Zhang ◽  
LiQun Chen
2020 ◽  
Vol 177 (2) ◽  
pp. 189-201
Author(s):  
Bin Qi ◽  
Jie Ma ◽  
Kewei Lv

The interval discrete logarithm problem(IDLP) is to find a solution n such that gn = h in a finite cyclic group G = 〈g〉, where h ∈ G and n belongs to a given interval. To accelerate solving IDLP, a restricted jump method is given to speed up Pollard’s kangaroo algorithm in this paper. Since the Pollard’ kangaroo-like method need to compute the intermediate value during every iteration, the restricted jump method gives another way to reuse the intermediate value so that each iteration is speeded up at least 10 times. Actually, there are some variants of kangaroo method pre-compute the intermediate value and reuse the pre-computed value in each iteration. Different from the pre-compute method that reuse the pre-computed value, the restricted jump method reuse the value naturally arised in pervious iteration, so that the improved algorithm not only avoids precomputation, but also speeds up the efficiency of each iteration. So only two or three large integer multiplications are needed in each iteration of the restricted jump method. And the average large integer multiplication times is (1:633 + o(1)) N in restricted jump method, which is verified in the experiment.


2014 ◽  
Vol 17 (A) ◽  
pp. 230-246 ◽  
Author(s):  
Razvan Barbulescu ◽  
Cécile Pierrot

AbstractIn this paper we study the discrete logarithm problem in medium- and high-characteristic finite fields. We propose a variant of the number field sieve (NFS) based on numerous number fields. Our improved algorithm computes discrete logarithms in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{F}_{p^n}$ for the whole range of applicability of the NFS and lowers the asymptotic complexity from $L_{p^n}({1/3},({128/9})^{1/3})$ to $L_{p^n}({1/3},(2^{13}/3^6)^{1/3})$ in the medium-characteristic case, and from $L_{p^n}({1/3},({64/9})^{1/3})$ to $L_{p^n}({1/3},((92 + 26 \sqrt{13})/27)^{1/3})$ in the high-characteristic case.


2019 ◽  
Vol 13 (3-4) ◽  
pp. 229-237
Author(s):  
Stavros Kousidis ◽  
Andreas Wiemers

Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.


Sign in / Sign up

Export Citation Format

Share Document