Subspace analysis of spectral features for speaker recognition

Author(s):  
Ling Chen ◽  
Hong Man ◽  
Huading Jia ◽  
Zhiyi Wang ◽  
Lei Wang ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Surendra Thakur ◽  
Emmanuel Adetiba ◽  
Oludayo O. Olugbara ◽  
Richard Millham

We propose a secure mobile Internet voting architecture based on the Sensus reference architecture and report the experiments carried out using short-term spectral features for realizing the voice biometric based authentication module of the architecture being proposed. The short-term spectral features investigated are Mel-Frequency Cepstral Coefficients (MFCCs), Mel-Frequency Discrete Wavelet Coefficients (MFDWC), Linear Predictive Cepstral Coefficients (LPCC), and Spectral Histogram of Oriented Gradients (SHOGs). The MFCC, MFDWC, and LPCC usually have higher dimensions that oftentimes lead to high computational complexity of the pattern matching algorithms in automatic speaker recognition systems. In this study, higher dimensions of each of the short-term features were reduced to an 81-element feature vector per Speaker using Histogram of Oriented Gradients (HOG) algorithm while neural network ensemble was utilized as the pattern matching algorithm. Out of the four short-term spectral features investigated, the LPCC-HOG gave the best statistical results withRstatistic of 0.9127 and mean square error of 0.0407. These compact LPCC-HOG features are highly promising for implementing the authentication module of the secure mobile Internet voting architecture we are proposing in this paper.


2020 ◽  
Vol 64 (4) ◽  
pp. 40404-1-40404-16
Author(s):  
I.-J. Ding ◽  
C.-M. Ruan

Abstract With rapid developments in techniques related to the internet of things, smart service applications such as voice-command-based speech recognition and smart care applications such as context-aware-based emotion recognition will gain much attention and potentially be a requirement in smart home or office environments. In such intelligence applications, identity recognition of the specific member in indoor spaces will be a crucial issue. In this study, a combined audio-visual identity recognition approach was developed. In this approach, visual information obtained from face detection was incorporated into acoustic Gaussian likelihood calculations for constructing speaker classification trees to significantly enhance the Gaussian mixture model (GMM)-based speaker recognition method. This study considered the privacy of the monitored person and reduced the degree of surveillance. Moreover, the popular Kinect sensor device containing a microphone array was adopted to obtain acoustic voice data from the person. The proposed audio-visual identity recognition approach deploys only two cameras in a specific indoor space for conveniently performing face detection and quickly determining the total number of people in the specific space. Such information pertaining to the number of people in the indoor space obtained using face detection was utilized to effectively regulate the accurate GMM speaker classification tree design. Two face-detection-regulated speaker classification tree schemes are presented for the GMM speaker recognition method in this study—the binary speaker classification tree (GMM-BT) and the non-binary speaker classification tree (GMM-NBT). The proposed GMM-BT and GMM-NBT methods achieve excellent identity recognition rates of 84.28% and 83%, respectively; both values are higher than the rate of the conventional GMM approach (80.5%). Moreover, as the extremely complex calculations of face recognition in general audio-visual speaker recognition tasks are not required, the proposed approach is rapid and efficient with only a slight increment of 0.051 s in the average recognition time.


Sign in / Sign up

Export Citation Format

Share Document