scholarly journals Evaluation of pseudo-haptic feedback for simulating torque: a comparison between isometric and elastic input devices

Author(s):  
A. Paljic ◽  
J.-M. Burkhardtt ◽  
S. Coquillart
2000 ◽  
Vol 9 (5) ◽  
pp. 486-496 ◽  
Author(s):  
A. C. Boud ◽  
C. Baber ◽  
S. J. Steiner

This paper reports on an investigation into the proposed usability of virtual reality for a manufacturing application such as the assembly of a number of component parts into a final product. Before the assembly task itself is considered, the investigation explores the use of VR for the training of human assembly operators and compares the findings to conventionally adopted techniques for parts assembly. The investigation highlighted several limitations of using VR technology. Most significant was the lack of haptic feedback provided by current input devices for virtual environments. To address this, an instrumented object (IO) was employed that enabled the user to pick up and manipulate the IO as the representation of a component from a product to be assembled. The reported findings indicate that object manipulation times are superior when IOs are employed as the interaction device, and that IO devices could therefore be adopted in VEs to provide haptic feedback for diverse applications and, in particular, for assembly task planning.


2020 ◽  
Vol 4 (4) ◽  
pp. 84
Author(s):  
Diyar Gür ◽  
Niklas Schäfer ◽  
Mario Kupnik ◽  
Philipp Beckerle

People with physical disabilities in their upper extremities face serious issues in using classical input devices due to lacking movement possibilities and precision. This article suggests an alternative input concept and presents corresponding input devices. The proposed interface combines an inertial measurement unit and force sensing resistors, which can replace mouse and keyboard. Head motions are mapped to mouse pointer positions, while mouse button actions are triggered by contracting mastication muscles. The contact pressures of each fingertip are acquired to replace the conventional keyboard. To allow for complex text entry, the sensory concept is complemented by an ambiguous keyboard layout with ten keys. The related word prediction function provides disambiguation at word level. Haptic feedback is provided to users corresponding to their virtual keystrokes for enhanced closed-loop interactions. This alternative input system enables text input as well as the emulation of a two-button mouse.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Felix Heimann ◽  
Giulio Barteselli ◽  
André Brand ◽  
Andreas Dingeldey ◽  
Laszlo Godard ◽  
...  

AbstractWe present a summary of the development and clinical use of two custom designed high-fidelity virtual-reality simulator training platforms. This simulator development program began in 2016 to support the phase III clinical trial Archway (ClinicalTrials.gov identifier, NCT03677934) intended to evaluate the Port Delivery System (PDS) developed by Genentech Inc. and has also been used to support additional clinical trials. The two simulators address two specific ophthalmic surgical procedures required for the successful use of PDS and provide state-of-the-art physical simulation models and graphics. The simulators incorporate customized active haptic feedback input devices that approximate different hand pieces including a custom hand piece specifically designed for PDS implantation. We further describe the specific challenges of the procedure and the development of corresponding training strategies realized within the simulation platform.


2004 ◽  
Author(s):  
Carolyn M. Sommerich ◽  
Sahika Vatan ◽  
Amy Asmus

2018 ◽  
Author(s):  
Hellen van Rees ◽  
◽  
Angelika Mader ◽  
Merlijn Smits ◽  
Geke Ludden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document