Optimizing the Design of a Configurable Digital Signal Processor for Accelerated Execution of the 2-D Discrete Cosine Transform

Author(s):  
C. Gloster Jr. ◽  
W. Gay ◽  
M. Amoo ◽  
M. Chouikha
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
S. E. Tsai ◽  
S. M. Yang

Discrete cosine transform (DCT) has been an international standard in Joint Photographic Experts Group (JPEG) format to reduce the blocking effect in digital image compression. This paper proposes a fast discrete cosine transform (FDCT) algorithm that utilizes the energy compactness and matrix sparseness properties in frequency domain to achieve higher computation performance. For a JPEG image of8×8block size in spatial domain, the algorithm decomposes the two-dimensional (2D) DCT into one pair of one-dimensional (1D) DCTs with transform computation in only 24 multiplications. The 2D spatial data is a linear combination of the base image obtained by the outer product of the column and row vectors of cosine functions so that inverse DCT is as efficient. Implementation of the FDCT algorithm shows that embedding a watermark image of 32 × 32 block pixel size in a 256 × 256 digital image can be completed in only 0.24 seconds and the extraction of watermark by inverse transform is within 0.21 seconds. The proposed FDCT algorithm is shown more efficient than many previous works in computation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. E. Tsai ◽  
K. C. Liu ◽  
S. M. Yang

This paper proposes an image watermarking method based on the fast discrete cosine transform (DCT) algorithm for implementation in digital signal processor. A digital watermark can be effectively embedded and efficiently extracted without the host image. The keys in watermarking process include four frequency coefficients in DCT, two random permutation vectors, and a quantization matrix for normalizing the watermark and the host image. The fast DCT algorithm has been shown to reduce the complexity of two-dimensional image transformation so that embedding/decoding an image watermark can be completed in real time within 0.33 seconds. The quality of both watermarked image and extracted (retrieved) watermark remains excellent. It is shown that the watermarking method is efficient in and robust to data cropping, transmission loss, and compression/decompression.


2007 ◽  
Vol 17 (2) ◽  
pp. 470-473 ◽  
Author(s):  
Igor I. Soloviev ◽  
M. Raihan Rafique ◽  
Henrik Engseth ◽  
Anna Kidiyarova-Shevchenko

2004 ◽  
Vol 75 (10) ◽  
pp. 4265-4267
Author(s):  
B. B. Carvalho ◽  
H. Fernandes ◽  
J. Sousa ◽  
C. A. F. Varandas

Sign in / Sign up

Export Citation Format

Share Document