Application of particle swarm optimization algorithm to decision making model incorporating cluster analysis

Author(s):  
Jovita Nenortaite ◽  
Rimantas Butleris
Author(s):  
Rahul Roy ◽  
Satchidananda Dehuri ◽  
Sung Bae Cho

The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.


2011 ◽  
Vol 2 (4) ◽  
pp. 41-57 ◽  
Author(s):  
Rahul Roy ◽  
Satchidananda Dehuri ◽  
Sung Bae Cho

The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Yisong Zheng ◽  
Xiuguo Zhang ◽  
Zijing Shang ◽  
Siyu Guo ◽  
Yiquan Du

In the process of ship collision avoidance decision making, steering collision avoidance is the most frequently adopted collision avoidance method. In order to obtain an effective and reasonable steering angle, this paper proposes a decision-making method for ship collision avoidance based on improved cultural particle swarm. Firstly, the ship steering angle direction is to be determined. In this stage, the Kalman filter is used to predict the ship’s trajectory. According to the prediction parameters, the collision risk index of the ship is calculated and the situation with the most dangerous ship is judged. Then, the steering angle direction of the ship is determined by considering the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). Secondly, the ship steering angle is to be calculated. In this stage, the cultural particle swarm optimization algorithm is improved by introducing the index of population premature convergence degree to adaptively adjust the inertia weight of the cultural particle swarm so as to avoid the algorithm falling into premature convergence state. The improved cultural particle swarm optimization algorithm is used to find the optimal steering angle within the range of the steering angle direction. Compared with other evolutionary algorithms, the improved cultural particle swarm optimization algorithm has better global convergence. The convergence speed and stability are also significantly improved. Thirdly, the ship steering angle direction decision method in the first stage and the ship steering angle decision method in the second stage are integrated into the electronic chart platform to verify the effectiveness of the decision-making method of ship collision avoidance presented in this paper. Results show that the proposed approach can automatically realize collision avoidance from all other ships and it has an important practical application value.


Sign in / Sign up

Export Citation Format

Share Document