Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches
Latest Publications


TOTAL DOCUMENTS

17
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781466621459, 9781466621466

Author(s):  
Masoud Yaghini ◽  
Mohsen Momeni ◽  
Mohammadreza Sarmadi

A Hamiltonian path is a path in an undirected graph, which visits each node exactly once and returns to the starting node. Finding such paths in graphs is the Hamiltonian path problem, which is NP-complete. In this paper, for the first time, a comparative study on metaheuristic algorithms for finding the shortest Hamiltonian path for 1071 Iranian cities is conducted. These are the main cities of Iran based on social-economic characteristics. For solving this problem, four hybrid efficient and effective metaheuristics, consisting of simulated annealing, ant colony optimization, genetic algorithm, and tabu search algorithms, are combined with the local search methods. The algorithms’ parameters are tuned by sequential design of experiments (DOE) approach, and the most appropriate values for the parameters are adjusted. To evaluate the proposed algorithms, the standard problems with different sizes are used. The performance of the proposed algorithms is analyzed by the quality of solution and CPU time measures. The results are compared based on efficiency and effectiveness of the algorithms.



Author(s):  
Jalel Euchi ◽  
Habib Chabchoub ◽  
Adnan Yassine

Mismanagement of routing and deliveries between sites of the same company or toward external sites leads to consequences in the cost of transport. When shipping alternatives exist, the selection of the appropriate shipping alternative (mode) for each shipment may result in significant cost savings. In this paper, the authors examine a class of vehicle routing in which a fixed internal fleet is available at the warehouse in the presence of an external transporter. The authors describe hybrid Iterated Density Estimation Evolutionary Algorithm with 2-opt local search to determine the specific assignment of each tour to a private vehicle (internal fleet) or an outside carrier (external fleet). Experimental results show that this method is effective, allowing the discovery of new best solutions for well-known benchmarks.



Author(s):  
Sameh Kessentini ◽  
Dominique Barchiesi ◽  
Thomas Grosges ◽  
Laurence Giraud-Moreau ◽  
Marc Lamy de la Chapelle

The metaheuristic approach has become an important tool for the optimization of design in engineering. In that way, its application to the development of the plasmonic based biosensor is apparent. Plasmonics represents a rapidly expanding interdisciplinary field with numerous transducers for physical, biological and medicine applications. Specific problems are related to this domain. The plasmonic structures design depends on a large number of parameters. Second, the way of their fabrication is complex and industrial aspects are in their infancy. In this study, the authors propose a non-uniform adapted Particle Swarm Optimization (PSO) for rapid resolution of plasmonic problem. The method is tested and compared to the standard PSO, the meta-PSO (Veenhuis, 2006) and the ANUHEM (Barchiesi, 2009).These approaches are applied to the specific problem of the optimization of Surface Plasmon Resonance (SPR) Biosensors design. Results show great efficiency of the introduced method.



Author(s):  
Yannis Marinakis ◽  
Magdalene Marinaki ◽  
Nikolaos Matsatsinis ◽  
Constantin Zopounidis

Nature-inspired methods are used in various fields for solving a number of problems. This study uses a nature-inspired method, artificial bee colony optimization that is based on the foraging behaviour of bees, for a financial classification problem. Financial decisions are often based on classification models, which are used to assign a set of observations into predefined groups. One important step toward the development of accurate financial classification models involves the selection of the appropriate independent variables (features) that are relevant to the problem. The proposed method uses a discrete version of the artificial bee colony algorithm for the feature selection step while nearest neighbour based classifiers are used for the classification step. The performance of the method is tested using various benchmark datasets from UCI Machine Learning Repository and in a financial classification task involving credit risk assessment. Its results are compared with the results of other nature-inspired methods.



Author(s):  
Rahul Roy ◽  
Satchidananda Dehuri ◽  
Sung Bae Cho

The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.



Author(s):  
Nashat Mansour ◽  
Ghia Sleiman-Haidar

University exam timetabling refers to scheduling exams into predefined days, time periods and rooms, given a set of constraints. Exam timetabling is a computationally intractable optimization problem, which requires heuristic techniques for producing adequate solutions within reasonable execution time. For large numbers of exams and students, sequential algorithms are likely to be time consuming. This paper presents parallel scatter search meta-heuristic algorithms for producing good sub-optimal exam timetables in a reasonable time. Scatter search is a population-based approach that generates solutions over a number of iterations and aims to combine diversification and search intensification. The authors propose parallel scatter search algorithms that are based on distributing the population of candidate solutions over a number of processors in a PC cluster environment. The main components of scatter search are computed in parallel and efficient communication techniques are employed. Empirical results show that the proposed parallel scatter search algorithms yield good speed-up. Also, they show that parallel scatter search algorithms improve solution quality because they explore larger parts of the search space within reasonable time, in contrast with the sequential algorithm.



Author(s):  
S. N. Omkar ◽  
G. Narayana Naik ◽  
Kiran Patil ◽  
Mrunmaya Mudigere

In this paper, a generic methodology based on swarm algorithms using Artificial Bee Colony (ABC) algorithm is proposed for combined cost and weight optimization of laminated composite structures. Two approaches, namely Vector Evaluated Design Optimization (VEDO) and Objective Switching Design Optimization (OSDO), have been used for solving constrained multi-objective optimization problems. The ply orientations, number of layers, and thickness of each lamina are chosen as the primary optimization variables. Classical lamination theory is used to obtain the global and local stresses for a plate subjected to transverse loading configurations, such as line load and hydrostatic load. Strength of the composite plate is validated using different failure criteria—Failure Mechanism based failure criterion, Maximum stress failure criterion, Tsai-Hill Failure criterion and the Tsai-Wu failure criterion. The design optimization is carried for both variable stacking sequences as well as standard stacking schemes and a comparative study of the different design configurations evolved is presented. Performance of Artificial Bee Colony (ABC) is compared with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for both VEDO and OSDO approaches. The results show ABC yielding a better optimal design than PSO and GA.



Author(s):  
R. Rathipriya ◽  
K. Thangavel ◽  
J. Bagyamani

Data mining extracts hidden information from a database that the user did not know existed. Biclustering is one of the data mining technique which helps marketing user to target marketing campaigns more accurately and to align campaigns more closely with the needs, wants, and attitudes of customers and prospects. The biclustering results can be tuned to find users’ browsing patterns relevant to current business problems. This paper presents a new application of biclustering to web usage data using a combination of heuristics and meta-heuristics algorithms. Two-way K-means clustering is used to generate the seeds from preprocessed web usage data, Greedy Heuristic is used iteratively to refine a set of seeds, which is fast but often yield local optimal solutions. In this paper, Genetic Algorithm is used as a global optimizer that can be coupled with greedy method to identify the global optimal target user groups based on their coherent browsing pattern. The performance of the proposed work is evaluated by conducting experiment on the msnbc, a clickstream dataset from UCI repository. Results show that the proposed work performs well in extracting optimal target users groups from the web usage data which can be used for focalized marketing campaigns.



Author(s):  
Gladys Maquera ◽  
Manuel Laguna ◽  
Dan Abensur Gandelman ◽  
Annibal Parracho Sant’Anna

Though its origins can be traced back to 1977, the development and application of the metaheuristic Scatter Search (SS) has stayed dormant for 20 years. However, in the last 10 years, research interest has positioned SS as one of the recognizable methodologies within the umbrella of evolutionary search. This paper presents an application of SS to the problem of routing vehicles that are required both to deliver and pickup goods (VRPSDP). This specialized version of the vehicle routing problem is particularly relevant to organizations that are concerned with sustainable and environmentally-friendly business practices. In this work, the efficiency of SS is evaluated when applied to this problem. Computational results of the application to instances in the literature are presented.



Author(s):  
Safa Khalouli ◽  
Fatima Ghedjati ◽  
Abdelaziz Hamzaoui

An integrated ant colony optimization algorithm (IACS-HFS) is proposed for a multistage hybrid flow-shop scheduling problem. The objective of scheduling is the minimization of the makespan. To solve this NP-hard problem, the IACS-HFS considers the assignment and sequencing sub-problems simultaneously in the construction procedures. The performance of the algorithm is evaluated by numerical experiments on benchmark problems taken from the literature. The results show that the proposed ant colony optimization algorithm gives promising and good results and outperforms some current approaches in the quality of schedules.



Sign in / Sign up

Export Citation Format

Share Document