Privacy Preserving Big Data Publication On Cloud Using Mondrian Anonymization Techniques and Deep Neural Networks

Author(s):  
J. Andrew ◽  
J. Karthikeyan ◽  
Jeffy Jebastin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Vishu Gupta ◽  
Logan Ward ◽  
Zijiang Yang ◽  
Christopher Wolverton ◽  
...  

AbstractThe application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1367
Author(s):  
Raghida El El Saj ◽  
Ehsan Sedgh Sedgh Gooya ◽  
Ayman Alfalou ◽  
Mohamad Khalil

Privacy-preserving deep neural networks have become essential and have attracted the attention of many researchers due to the need to maintain the privacy and the confidentiality of personal and sensitive data. The importance of privacy-preserving networks has increased with the widespread use of neural networks as a service in unsecured cloud environments. Different methods have been proposed and developed to solve the privacy-preserving problem using deep neural networks on encrypted data. In this article, we reviewed some of the most relevant and well-known computational and perceptual image encryption methods. These methods as well as their results have been presented, compared, and the conditions of their use, the durability and robustness of some of them against attacks, have been discussed. Some of the mentioned methods have demonstrated an ability to hide information and make it difficult for adversaries to retrieve it while maintaining high classification accuracy. Based on the obtained results, it was suggested to develop and use some of the cited privacy-preserving methods in applications other than classification.


Author(s):  
Vishal Babu Siramshetty ◽  
Dac-Trung Nguyen ◽  
Natalia J. Martinez ◽  
Anton Simeonov ◽  
Noel T. Southall ◽  
...  

The rise of novel artificial intelligence methods necessitates a comparison of this wave of new approaches with classical machine learning for a typical drug discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human Ether-à-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here we perform a comprehensive comparison of prediction models based on classical (random forests and gradient boosting) and modern (deep neural networks and recurrent neural networks) artificial intelligence methods. The training set (~9000 compounds) was compiled by integrating hERG bioactivity data from ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-valued continuous vectors derived from chemical autoencoders trained on a large chemical space (> 1.5 million compounds). The models were prospectively validated on ~840 in-house compounds screened in the same thallium flux assay. The deep neural networks performed significantly better than the classical methods with the latent descriptors. The recurrent neural networks that operate on SMILES provided highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Further, we shed light on the potential of artificial intelligence methods to exploit the chemistry big data and generate novel chemical representations useful in predictive modeling and tailoring new chemical space.<br>


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 177844-177855 ◽  
Author(s):  
Warit Sirichotedumrong ◽  
Yuma Kinoshita ◽  
Hitoshi Kiya

Author(s):  
Brett K. Beaulieu-Jones ◽  
Zhiwei Steven Wu ◽  
Chris Williams ◽  
Ran Lee ◽  
Sanjeev P. Bhavnani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document