Fault detection for networked control systems with time delays and data losses

Author(s):  
Wang Qing ◽  
Wang Zhaolei ◽  
Ma Aojia ◽  
Dong Chaoyang
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yan-feng Wang

This paper investigates the robust H∞ fault detection problem for networked control systems with Markov time-delays and data packet loss in both S/C and C/A channels. First, the time-delay from sensor to controller (S/C) and the time-delay from sensor to actuator (C/A) are described by two different Markov chains. Two random variables obeying the Bernoulli distribution are used to describe the packet loss between the sensor and the controller together between the controller and the actuator. Based on this, a fault detection filter is constructed and the closed-loop system mathematical model is established. Then, the solution method of the fault detection filter and controller gain matrix is given. The relationship between the probability of successful packet transmission and the ability to suppress external disturbance is obtained. Finally, simulation verifies the effectiveness of the proposed method.


2012 ◽  
Vol 38 (5) ◽  
pp. 858-864 ◽  
Author(s):  
Juan LI ◽  
You-Gang ZHAO ◽  
Yang YU ◽  
Peng ZHANG ◽  
Hong-Wei GAO

2020 ◽  
Vol 53 (2) ◽  
pp. 3098-3103
Author(s):  
Martin Steinberger ◽  
Markus Tranninger ◽  
Martin Horn ◽  
Karl Henrik Johansson

Sign in / Sign up

Export Citation Format

Share Document