scholarly journals Fault Detection for Wireless Networked Control Systems with Stochastic Uncertainties and Multiple Time Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.

2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Pengfei Guo ◽  
Jie Zhang ◽  
Hamid Reza Karimi ◽  
Yurong Liu ◽  
Yunji Wang ◽  
...  

This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to designH∞fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying theH∞performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yilin Wang ◽  
Hamid Reza Karimi ◽  
Zhengrong Xiang

We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs). Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Ming Lyu ◽  
Hamid Reza Karimi ◽  
Yuming Bo

This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is proposed. Then the sufficient conditions of sliding motion asymptotical stability are derived by means of the linear matrix inequality (LMI) approach on a designed surface. Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing the discrete-time sliding-mode reaching condition of the specified sliding surface. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.


Sign in / Sign up

Export Citation Format

Share Document