The Noninvasive Reconstruction of Inner Heat Source and Temperature Fields in Biological Body by Boundary Element Method

Author(s):  
Zhang-Sen Yu ◽  
Kai-Yang Li ◽  
Shao-Ping Zhang
2019 ◽  
Vol 35 (6) ◽  
pp. 839-850
Author(s):  
Y. C. Shiah ◽  
Nguyen Anh Tuan ◽  
M.R. Hematiyan

ABSTRACTIn engineering applications, it is pretty often to have domain heat source involved inside. This article proposes an approach using the boundary element method to study thermal stresses in 3D anisotropic solids when internal domain heat source is involved. As has been well noticed, thermal effect will give rise to a volume integral, where its direct evaluation will need domain discretization. This shall definitely destroy the most distinctive notion of the boundary element method that only boundary discretization is required. The present work presents an analytical transformation of the volume integral in the boundary integral equation due to the presence of internal volume heat source. For simplicity, distribution of the heat source is modeled by a quadratic function. When needed, the formulations can be further extended to treat higher-ordered volume heat sources. Indeed, the present work has completely restored the boundary discretization feature of the boundary element method for treating 3D anisotropic thermoelasticity involving volume heat source.


1991 ◽  
Vol 113 (3) ◽  
pp. 311-319 ◽  
Author(s):  
Cho Lik Chan ◽  
Abhijit Chandra

In this paper, the boundary element method (BEM) approach is used to analyze the thermal aspects of steady state metal cutting processes. Particular attention is paid to modeling of the boundary conditions at the tool-chip and the chip-workpiece interfaces. Since the velocities in each of the regions are different, the heat transfer within the tool, the chip, and the workpiece are first calculated separately. A complete model for heat transfer during steady state turning is then obtained by matching the boundary conditions across the primary and the secondary shear zones. An exact expression for matching is developed to avoid any iterations. The temperature fields within the workpiece, the chip, and the tool for various processing conditions are obtained and presented. The numerical results obtained by the BEM are also compared to Jaeger solutions and existing FEM results reported in the literature. The BEM is found to be efficient and robust for this class of steady state conduction-convection problems.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

Sign in / Sign up

Export Citation Format

Share Document