scholarly journals On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method

Author(s):  
Van-Dinh Nguyen ◽  
Hieu V. Nguyen ◽  
Octavia A. Dobre ◽  
Oh-Soon Shin
Author(s):  
Ngo Tan Vu Khanh

The skyrocketing growth in the number of Internet of Things (IoT) devices will certainly pose a huge traffic demand for fifth-generation (5G) wireless networks and beyond. In-band full-duplex (IBFD), which is theoretically expected to double the spectral efficiency of a half-duplex (HD) wireless channel and to connect more devices, has been considered as a promising technology to accelerate the development of IoT. To exploit the full potential of IBFD, the key challenge is how to handle network interference (including self-interference, co-channel interference and multiuser interference) more effectively. In this paper, we propose a simple yet efficient user grouping method, where a base station (BS) serves strong downlink users and weak uplink users and vice versa in different frequency bands, mitigating severe network interference. We aim to maximize a minimum rate among all users subject to bandwidth and power constraints, which is formulated as a highly nonconvex optimization problem. By leveraging inner approximation framework, we develop a very efficient iterative algorithm to solve this problem, which guarantees at least a local optimal solution. Numerical results are provided to show not only the benefit of using full-duplex raido at BS, but also the advantage of the proposed user grouping method.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2182
Author(s):  
Ngo Tan Vu Khanh ◽  
Van Dinh Nguyen

The skyrocketing growth in the number of Internet of Things (IoT) devices has posed a huge traffic demand for fifth-generation (5G) wireless networks and beyond. In-band full-duplex (IBFD), which is theoretically expected to double the spectral efficiency of a half-duplex wireless channel and connect more devices, has been considered as a promising technology in order to accelerate the development of IoT. In order to exploit the full potential of IBFD, the key challenge is how to handle network interference (including self-interference, co-channel interference, and multiuser interference) more effectively. In this paper, we propose a simple yet efficient user grouping method, where a base station (BS) serves strong downlink users and weak uplink users and vice versa in different frequency bands, mitigating severe network interference. First, we aim to maximize a minimum rate among all of the users subject to bandwidth and power constraints, which is formulated as a nonconvex optimization problem. By leveraging the inner approximation framework, we develop a very efficient iterative algorithm for solving this problem, which guarantees at least a local optimal solution. The proposed iterative algorithm solves a simple convex program at each iteration, which can be further cast to a conic quadratic program. We then formulate the optimization problem of sum throughput maximization, which can be solved by the proposed algorithm after some slight modifications. Extensive numerical results are provided to show not only the benefit of using full-duplex radio at BS, but also the advantage of the proposed user grouping method.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 5785-5797 ◽  
Author(s):  
Van-Dinh Nguyen ◽  
Hieu V. Nguyen ◽  
Chuyen T. Nguyen ◽  
Oh-Soon Shin

2018 ◽  
Vol 36 (7) ◽  
pp. 1480-1498 ◽  
Author(s):  
Van-Dinh Nguyen ◽  
Hieu V. Nguyen ◽  
Octavia A. Dobre ◽  
Oh-Soon Shin

Sign in / Sign up

Export Citation Format

Share Document