frequency selective
Recently Published Documents


TOTAL DOCUMENTS

6787
(FIVE YEARS 1237)

H-INDEX

88
(FIVE YEARS 13)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 640
Author(s):  
Yi Lu ◽  
Juan Chen ◽  
Jianxing Li ◽  
Wenjing Xu

In high-power microwave applications, the electromagnetic-thermal effect of frequency selective surface (FSS) cannot be ignored. In this paper, the electromagnetic-thermal coupling effects of cross-slot FSS were studied. We used an equivalent circuit method and CST software to analyze the electromagnetic characteristics of cross-slot FSS. Then, we used multi-field simulation software COMSOL Multiphysics to study the thermal effect of the FSSs. To verify the simulation results, we used a horn antenna with a power of 20 W to radiate the FSSs and obtain the stable temperature distribution of the FSSs. By using simulations and experiments, it is found that the maximum temperature of the cross-slot FSS appears in the middle of the cross slot. It is also found that the FSS with a narrow slot has severer thermal effect than that with a wide slot. In addition, the effects of different incident angles on the temperature variation of FSS under TE and TM polarization were also studied. It is found that in TE polarization, with the increase in incident angle, the maximum stable temperature of FSS increases gradually. In TM polarization, with the increase in incident angle, the maximum stable temperature of FSS decreases gradually.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 552
Author(s):  
Juan Andrés Vásquez-Peralvo ◽  
Adrián Tamayo-Domínguez ◽  
Gerardo Pérez-Palomino ◽  
José Manuel Fernández-González ◽  
Thomas Wong

The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite payloads and military applications. However, there is no record of the frequency response in the millimeter-wave band for inductive 3D frequency selective structures implemented by different metallization techniques. For this reason, three different prototypes of dielectric 3D frequency selective structures working in the millimeter-wave band are designed, simulated, and manufactured using VAT photopolymerization. These prototypes are subsequently metallized using metallic paint atomization and electroplating. The manufactured prototypes have been carefully selected, considering their design complexity, starting with the simplest, the square aperture, the medium complexity, the woodpile structure, and the most complex, the torus structure. Then, each structure is measured before and after the metallization process using a measurement bench. The metallization used for the measurement is nickel spray flowed by the copper electroplating. For the electroplating, a detailed table showing the total area to be metallized and the current applied is also provided. Finally, the effectiveness of both metallization techniques is compared with the simulations performed using CST Microwave Studio. Results indicate that a shifted and reduced band-pass is obtained in some structures. On the other hand, for very complex structures, as in the torus case, band-pass with lower loss is obtained using copper electroplating, thus allowing the manufacturing of inductive 3D frequency selective structures in the millimeter-wave band at a low cost.


Sign in / Sign up

Export Citation Format

Share Document