network interference
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 2)

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2182
Author(s):  
Ngo Tan Vu Khanh ◽  
Van Dinh Nguyen

The skyrocketing growth in the number of Internet of Things (IoT) devices has posed a huge traffic demand for fifth-generation (5G) wireless networks and beyond. In-band full-duplex (IBFD), which is theoretically expected to double the spectral efficiency of a half-duplex wireless channel and connect more devices, has been considered as a promising technology in order to accelerate the development of IoT. In order to exploit the full potential of IBFD, the key challenge is how to handle network interference (including self-interference, co-channel interference, and multiuser interference) more effectively. In this paper, we propose a simple yet efficient user grouping method, where a base station (BS) serves strong downlink users and weak uplink users and vice versa in different frequency bands, mitigating severe network interference. First, we aim to maximize a minimum rate among all of the users subject to bandwidth and power constraints, which is formulated as a nonconvex optimization problem. By leveraging the inner approximation framework, we develop a very efficient iterative algorithm for solving this problem, which guarantees at least a local optimal solution. The proposed iterative algorithm solves a simple convex program at each iteration, which can be further cast to a conic quadratic program. We then formulate the optimization problem of sum throughput maximization, which can be solved by the proposed algorithm after some slight modifications. Extensive numerical results are provided to show not only the benefit of using full-duplex radio at BS, but also the advantage of the proposed user grouping method.


Author(s):  
Ngo Tan Vu Khanh

The skyrocketing growth in the number of Internet of Things (IoT) devices will certainly pose a huge traffic demand for fifth-generation (5G) wireless networks and beyond. In-band full-duplex (IBFD), which is theoretically expected to double the spectral efficiency of a half-duplex (HD) wireless channel and to connect more devices, has been considered as a promising technology to accelerate the development of IoT. To exploit the full potential of IBFD, the key challenge is how to handle network interference (including self-interference, co-channel interference and multiuser interference) more effectively. In this paper, we propose a simple yet efficient user grouping method, where a base station (BS) serves strong downlink users and weak uplink users and vice versa in different frequency bands, mitigating severe network interference. We aim to maximize a minimum rate among all users subject to bandwidth and power constraints, which is formulated as a highly nonconvex optimization problem. By leveraging inner approximation framework, we develop a very efficient iterative algorithm to solve this problem, which guarantees at least a local optimal solution. Numerical results are provided to show not only the benefit of using full-duplex raido at BS, but also the advantage of the proposed user grouping method.


2020 ◽  
Vol 102 (2) ◽  
pp. 368-380 ◽  
Author(s):  
Michael P. Leung

We study nonparametric and regression estimators of treatment and spillover effects when interference is mediated by a network. Inference is nonstandard due to dependence induced by treatment spillovers and network-correlated effects. We derive restrictions on the network degree distribution under which the estimators are consistent and asymptotically normal and show they can be verified under a strategic model of network formation. We also construct consistent variance estimators robust to heteroskedasticity and network dependence. Our results allow for the estimation of spillover effects using data from only a single, possibly sampled, network.


2020 ◽  
Vol 10 (6) ◽  
pp. 2192 ◽  
Author(s):  
Jingwei Liu ◽  
Takumi Aoki ◽  
Zhetao Li ◽  
Tingrui Pei ◽  
Young-june Choi ◽  
...  

Recently, we often see the environment where many one-to-one Wireless Local Area Networks (WLANs) exist in a small area. In this environment, the network throughput of certain WLAN reduces significantly because of the interference from other networks (i.e., inter-network interference). The inter-network interference is the effect of carrier-sensing activities when there are ongoing transmissions in neighbor networks. This paper presents analytical expressions using airtime concept, which newly take into account the inter-network interference, for network throughputs of WLANs. There are existing works that similarly address the WLAN’s carrier-sensing duration. However, they either consider a simple interference model or assume the simultaneous transmission time is negligible. Different from them, we consider the significant impact of simultaneous transmission. As a result, our analytical model can precisely express each network carrier-sensing duration by subtracting the simultaneous transmission time. More specifically, we have successfully obtained each network throughput by expressing frame-existence probabilities concerning each network’s End Device (ED). We also confirm the validity of the analysis by comparison with simulation. The analytical results and the simulation results agree well.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 469
Author(s):  
Deokhui Lee ◽  
Jaewoo So

As the number of users using multimedia sharing services increases, the need to ensure the minimum data rate of wireless users increases. Meanwhile, in the cooperative cognitive radio (CR) network, it is important to provide the quality-of-services for secondary users (SUs) while satisfying the inter-network interference constraint from secondary transmitters to primary users (PUs). Under the limited feedback resource constraint, this paper proposes a feedback bits allocation scheme for the guaranteed bit rate services of SUs while satisfying the inter-network interference constraint. This paper investigates how many feedback bits between the ST and PUs are required to guarantee the minimum data rate of SUs and then proposes a feedback bits allocation scheme that maximizes the average sum rate of SUs while reducing the outage probability of SUs.


Sign in / Sign up

Export Citation Format

Share Document