SVM-based Channel Estimation and Data Detection for Massive MIMO Systems with One-Bit ADCs

Author(s):  
Ly V. Nguyen ◽  
Duy H. N. Nguyen ◽  
A. Lee Swindlehurs
2015 ◽  
Vol 86 (4) ◽  
pp. 1857-1877 ◽  
Author(s):  
Van-Dinh Nguyen ◽  
Hieu V. Nguyen ◽  
Yoan Shin ◽  
Won-Cheol Lee ◽  
Oh-Soon Shin

2021 ◽  
Vol 69 ◽  
pp. 2086-2099
Author(s):  
Ly V. Nguyen ◽  
A. Lee Swindlehurst ◽  
Duy H. N. Nguyen

Telecom ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 3-17
Author(s):  
Mário Marques da Silva ◽  
Rui Dinis ◽  
João Guerreiro

5G Communications will support millimeter waves (mm-Wave), alongside the conventional centimeter waves, which will enable much higher throughputs and facilitate the employment of hundreds or thousands of antenna elements, commonly referred to as massive Multiple Input–Multiple Output (MIMO) systems. This article proposes and studies an efficient low complexity receiver that jointly performs channel estimation based on superimposed pilots, and data detection, optimized for massive MIMO (m-MIMO). Superimposed pilots suppress the overheads associated with channel estimation based on conventional pilot symbols, which tends to be more demanding in the case of m-MIMO, leading to a reduction in spectral efficiency. On the other hand, MIMO systems tend to be associated with an increase of complexity and increase of signal processing, with an exponential increase with the number of transmit and receive antennas. A reduction of complexity is obtained with the use of the two proposed algorithms. These algorithms reduce the complexity but present the disadvantage that they generate a certain level of interference. In this article, we consider an iterative receiver that performs the channel estimation using superimposed pilots and data detection, while mitigating the interference associated with the proposed algorithms, leading to a performance very close to that obtained with conventional pilots, but without the corresponding loss in the spectral efficiency.


2020 ◽  
pp. 1-1
Author(s):  
Lei Zhou ◽  
Jisheng Dai ◽  
Weichao Xu ◽  
Chunqi Chang

Sign in / Sign up

Export Citation Format

Share Document