correlated channels
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 59)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Feng-Lin Wu ◽  
Zhen-Yu Peng ◽  
Si-Yuan Liu

Abstract We investigate how the correlated actions of quantum channels affect the robustness of entangled states. We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing, bit flip, bit-phase flip, and phase flip channels. It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels, and the Bell-like state is always the most robust state. We also consider the robustness of three-qubit pure states in correlated noisy channels. For the correlated bit flip and phase flip channels, the result shows that although the most robust and most fragile states are locally unitary equivalent, they exhibit different robustness in different correlated channels, and the effect of channel correlations on them is also significantly different. However, for the correlated depolarizing and bit-phase flip channels, the robustness of two special three-qubit pure states is exactly the same. Moreover, compared with the random three-qubit pure states, they are neither the most robust states nor the most fragile states.


2021 ◽  
Author(s):  
◽  
Jawad Mirza

<p>Multiple antenna systems provide spatial multiplexing and diversity benefits.These systems also offer beamforming and interference mitigation capabilities in single-user (SU) and multi-user (MU) scenarios, respectively. Although diversity can be achieved without channel state information (CSI) at the transmitter using space-time codes, the knowledge of instantaneous CSI at the transmitter is essential to the above mentioned gains. In frequency division duplexing (FDD) systems, limited feedback techniques are employed to obtain CSI at the transmitter from the receiver using a low-rate link. As a consequence, CSI acquired by the transmitter in such manner have errors due to channel estimation and codebook quantization at the receiver, resulting in performance degradation of multi-antenna systems. In this thesis, we examine CSI inaccuracies due to codebook quantization errors and investigate several other aspects of limited feedback in SU, MU and multicell wireless communication systems with various channel models.  For SU multiple-input multiple-output (MIMO) systems, we examine the capacity loss using standard codebooks. In particular, we consider single-stream and two-stream MIMO transmissions and derive capacity loss expressions in terms of minimum squared chordal distance for various MIMO receivers. Through simulations, we investigate the impact of codebook quantization errors on the capacity performance in uncorrelated Rayleigh, spatially correlated Rayleigh and standardized MIMO channels. This work motivates the need of effective codebook design to reduce the codebook quantization errors in correlated channels.  Subsequently, we explore the improvements in the design of codebooks in temporally and spatially correlated channels for MU multiple-input single-output (MISO) systems, by employing scaling and rotation techniques. These codebooks quantize instantaneous channel direction information (CDI) and are referred as differential codebooks in the thesis. We also propose various adaptive scaling techniques for differential codebooks where packing density of codewords in the differential codebook are altered according to the channel condition, in order to reduce the quantization errors. The proposed differential codebooks improve the spectral efficiency of the system by minimizing the codebook quantization errors in spatially and temporally correlated channels.  Later, we broaden the scope to massive MISO systems and propose trellis coded quantization (TCQ) schemes to quantize CDI. Unlike conventional codebook approach, the TCQ scheme does not require exhaustive search to select an appropriate codeword, thus reducing computational complexity and memory requirement at the receiver. The proposed TCQ schemes yield significant performance improvements compared to the existing TCQ based limited feedback schemes in both temporally and spatially correlated channels.  Finally, we investigate interference coordination for multicell MU MISO systems using regularized zero-forcing (RZF) precoding. We consider random vector quantization (RVQ) codebooks and uncorrelated Rayleigh channels. We derive expected SINR approximations for perfect CDI and RVQ codebook-based CDI. We also propose an adaptive bit allocation scheme which aims to minimize the network interference and moreover, improves the spectral efficiency compared to equal bit allocation and coordinated zero-forcing (ZF) based adaptive bit allocation schemes.</p>


2021 ◽  
Author(s):  
◽  
Jawad Mirza

<p>Multiple antenna systems provide spatial multiplexing and diversity benefits.These systems also offer beamforming and interference mitigation capabilities in single-user (SU) and multi-user (MU) scenarios, respectively. Although diversity can be achieved without channel state information (CSI) at the transmitter using space-time codes, the knowledge of instantaneous CSI at the transmitter is essential to the above mentioned gains. In frequency division duplexing (FDD) systems, limited feedback techniques are employed to obtain CSI at the transmitter from the receiver using a low-rate link. As a consequence, CSI acquired by the transmitter in such manner have errors due to channel estimation and codebook quantization at the receiver, resulting in performance degradation of multi-antenna systems. In this thesis, we examine CSI inaccuracies due to codebook quantization errors and investigate several other aspects of limited feedback in SU, MU and multicell wireless communication systems with various channel models.  For SU multiple-input multiple-output (MIMO) systems, we examine the capacity loss using standard codebooks. In particular, we consider single-stream and two-stream MIMO transmissions and derive capacity loss expressions in terms of minimum squared chordal distance for various MIMO receivers. Through simulations, we investigate the impact of codebook quantization errors on the capacity performance in uncorrelated Rayleigh, spatially correlated Rayleigh and standardized MIMO channels. This work motivates the need of effective codebook design to reduce the codebook quantization errors in correlated channels.  Subsequently, we explore the improvements in the design of codebooks in temporally and spatially correlated channels for MU multiple-input single-output (MISO) systems, by employing scaling and rotation techniques. These codebooks quantize instantaneous channel direction information (CDI) and are referred as differential codebooks in the thesis. We also propose various adaptive scaling techniques for differential codebooks where packing density of codewords in the differential codebook are altered according to the channel condition, in order to reduce the quantization errors. The proposed differential codebooks improve the spectral efficiency of the system by minimizing the codebook quantization errors in spatially and temporally correlated channels.  Later, we broaden the scope to massive MISO systems and propose trellis coded quantization (TCQ) schemes to quantize CDI. Unlike conventional codebook approach, the TCQ scheme does not require exhaustive search to select an appropriate codeword, thus reducing computational complexity and memory requirement at the receiver. The proposed TCQ schemes yield significant performance improvements compared to the existing TCQ based limited feedback schemes in both temporally and spatially correlated channels.  Finally, we investigate interference coordination for multicell MU MISO systems using regularized zero-forcing (RZF) precoding. We consider random vector quantization (RVQ) codebooks and uncorrelated Rayleigh channels. We derive expected SINR approximations for perfect CDI and RVQ codebook-based CDI. We also propose an adaptive bit allocation scheme which aims to minimize the network interference and moreover, improves the spectral efficiency compared to equal bit allocation and coordinated zero-forcing (ZF) based adaptive bit allocation schemes.</p>


Author(s):  
Lígia May Taniguchi ◽  
João Henrique Inacio de Souza ◽  
David William Marques Guerra ◽  
Taufik Abrão

2021 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Marwah Abdulrazzaq Naser ◽  
Mustafa Ismael Salman ◽  
Muntadher Alsabah

Massive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realistic physical channel model. To this end, the MSE minimization and the spectral efficiency (SE) maximization are investigated. The results show that the SE is significantly degraded using the URA topology even when the RZF precoder is used. This is because the level of interference is significantly increased in the highly correlated channels even though the MSE is considerably minimized. This implies that using a URA topology with relatively high channel correlations would not be beneficial to the SE unless an interference management scheme is exploited.


2021 ◽  
Vol 11 (6) ◽  
pp. 713
Author(s):  
Maged S. AL-Quraishi ◽  
Irraivan Elamvazuthi ◽  
Tong Boon Tang ◽  
Muhammad Al-Qurishi ◽  
Syed Hasan Adil ◽  
...  

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have temporal and spatial characteristics that may complement each other and, therefore, pose an intriguing approach for brain-computer interaction (BCI). In this work, the relationship between the hemodynamic response and brain oscillation activity was investigated using the concurrent recording of fNIRS and EEG during ankle joint movements. Twenty subjects participated in this experiment. The EEG was recorded using 20 electrodes and hemodynamic responses were recorded using 32 optodes positioned over the motor cortex areas. The event-related desynchronization (ERD) feature was extracted from the EEG signal in the alpha band (8–11) Hz, and the concentration change of the oxy-hemoglobin (oxyHb) was evaluated from the hemodynamics response. During the motor execution of the ankle joint movements, a decrease in the alpha (8–11) Hz amplitude (desynchronization) was found to be correlated with an increase of the oxyHb (r = −0.64061, p < 0.00001) observed on the Cz electrode and the average of the fNIRS channels (ch28, ch25, ch32, ch35) close to the foot area representation. Then, the correlated channels in both modalities were used for ankle joint movement classification. The result demonstrates that the integrated modality based on the correlated channels provides a substantial enhancement in ankle joint classification accuracy of 93.01 ± 5.60% (p < 0.01) compared with single modality. These results highlight the potential of the bimodal fNIR–EEG approach for the development of future BCI for lower limb rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document