Robust Exponential Stabilization of Stochastic Large-scale Delay Systems

Author(s):  
Lirong Huang ◽  
Feiqi Deng
2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Shujie ◽  
Shi Bao ◽  
Zhang Qiang ◽  
Pan Tetie

This paper investigates the problem of robust exponential stabilization for uncertain impulsive bilinear time-delay systems with saturating actuators. By using the Lyapunov function and Razumikhin-type techniques, two classes of impulsive systems are considered: the systems with unstable discrete-time dynamics and the ones with stable discrete-time dynamics. Sufficient conditions for robust stabilization are obtained in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the theoretical results.


2019 ◽  
Vol 41 (13) ◽  
pp. 3612-3625 ◽  
Author(s):  
Wang Qian ◽  
Wang Qiangde ◽  
Wei Chunling ◽  
Zhang Zhengqiang

The paper solves the problem of a decentralized adaptive state-feedback neural tracking control for a class of stochastic nonlinear high-order interconnected systems. Under the assumptions that the inverse dynamics of the subsystems are stochastic input-to-state stable (SISS) and for the controller design, Radial basis function (RBF) neural networks (NN) are used to cope with the packaged unknown system dynamics and stochastic uncertainties. Besides, the appropriate Lyapunov-Krosovskii functions and parameters are constructed for a class of large-scale high-order stochastic nonlinear strong interconnected systems with inverse dynamics. It has been proved that the actual controller can be designed so as to guarantee that all the signals in the closed-loop systems remain semi-globally uniformly ultimately bounded, and the tracking errors eventually converge in the small neighborhood of origin. Simulation example has been proposed to show the effectiveness of our results.


2015 ◽  
Vol 158 ◽  
pp. 194-203 ◽  
Author(s):  
Guozeng Cui ◽  
Zhen Wang ◽  
Guangming Zhuang ◽  
Ze Li ◽  
Yuming Chu

Sign in / Sign up

Export Citation Format

Share Document