Fault diagnosis based on radial basis function neural network in analog circuits

Author(s):  
Cheng Wang ◽  
Yongle Xie ◽  
Guangju Chen
1997 ◽  
Vol 07 (06) ◽  
pp. 643-655 ◽  
Author(s):  
N. S. C. Babu ◽  
V. C. Prasad

The application of a radial basis function neural network (RBFN) for analog circuit fault isolation is presented. In this method the RBFN replaces the fault dictionary of analog circuits. The proposed method for analog circuit fault isolation takes the advantage of extremely fast training of RBFN compared to earlier neural network methods. A method is suggested to select centers and widths of RBF units. This selection procedure accounts for the component tolerances. The effectiveness of the RBFN for the fault isolation problem is demonstrated with an illustrative example. RBFN performed well even when the input patterns are drawn directly from the test node voltages of the analog circuit under consideration. A method is suggested to modify the RBF network in the event of occurrence of a new fault. The suggested modifications do not affect the previous training.


2020 ◽  
Vol 26 (9-10) ◽  
pp. 629-642
Author(s):  
Zhihao Jin ◽  
Qicheng Han ◽  
Kai Zhang ◽  
Yimin Zhang

In the intelligent fault diagnosis of rolling bearings, the high recognition accuracy is hardly achieved when small training samples and strong noise happen. In this article, a novel fault diagnosis method is proposed, that is radial basis function neural network with power spectrum of Welch method. This fault diagnosis model adopts the way of end-to-end operating mode. It takes the original vibration signal (time-domain signal) as input, and Welch method transforms the data from time-domain signals to power spectrums and suppresses high strength noise. Then the results of Welch method are classified by radial basis function neural network. To test the performance of radial basis function neural network with power spectrum of Welch method, the method is compared with some advanced fault diagnosis methods, and the limit performance test for radial basis function neural network with power spectrum of Welch method is carried out to obtain its ultimate diagnosis ability. The results show that the proposed method can realize the high diagnostic precision without the complex feature extraction from the signal. At the same time, in the case of a small amount of training data, this method also can achieve the diagnosis in high precision. Moreover, the anti-noise performance of radial basis function neural network with power spectrum of Welch method is better than the performance of some fault diagnosis methods proposed in recent years.


Sign in / Sign up

Export Citation Format

Share Document