Stabilization of networked control systems using switched time-delay systems theory

Author(s):  
M. Valedein Asl ◽  
R. Mahboobi Esfanjani
2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Pengfei Guo ◽  
Jie Zhang ◽  
Hamid Reza Karimi ◽  
Yurong Liu ◽  
Yunji Wang ◽  
...  

This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to designH∞fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying theH∞performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.


2013 ◽  
Vol 321-324 ◽  
pp. 1858-1862 ◽  
Author(s):  
Li Sheng Wei ◽  
Zhi Hui Mei ◽  
Ming Jiang

This study focus on α-Stability constraints for uncertain networked control systems (NCSs) subject to disturbance inputs, where the network transmission is connected with time-delay and packet dropout. The overall NCSs model is derived. In order to obtain much less conservative results, the sufficient condition for feasibility is presented in term of 2nd Lyapunov stability theory and a set of linear matrix inequalities (LMIs). This LMI approach can be the optimization problem of computation of the maximal allowed bound on the time-delay for NCSs.


Sign in / Sign up

Export Citation Format

Share Document