A Super-Cubic Derivative-Free Algorithm for Non-linear Equations

Author(s):  
Yunxiang Li ◽  
Yehui Peng
2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 401-409
Author(s):  
Malik Ullah ◽  
Fayyaz Ahmad

A five-point thirty-two convergence order derivative-free iterative method to find simple roots of non-linear equations is constructed. Six function evaluations are performed to achieve optimal convergence order 26-1 = 32 conjectured by Kung and Traub [1]. Secant approximation to the derivative is computed around the initial guess. High order convergence is attained by constructing polynomials of quotients for functional values.


Author(s):  
Sanaullah Jamali

In this article, an iterative, bracketing and derivative-free method have been proposed with the second-order of convergence for the solution of non-linear equations. The proposed method derives from the Stirling interpolation technique, Stirling interpolation technique is the process of using points with known values or sample points to estimate values at unknown points or polynomials. All types of problems (taken from literature) have been tested by the proposed method and compared with existing methods (regula falsi method, secant method and newton raphson method) and it’s noted that the proposed method is more rapidly converges as compared to all other existing methods. All problems were solved by using MATLAB Version: 8.3.0.532 (R2014a) on my personal computer with specification Intel(R) Core (TM) i3-4010U CPU @ 1.70GHz with RAM 4.00GB and Operating System: Microsoft Windows 10 Enterprise Version 10.0, 64-Bit Server, x64-based processor.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


Author(s):  
Manoj Kumar Singh ◽  
Arvind K. Singh

AbstractThe motive of the present work is to introduce and investigate the quadratically convergent Newton’s like method for solving the non-linear equations. We have studied some new properties of a Newton’s like method with examples and obtained a derivative-free globally convergent Newton’s like method using forward difference operator and bisection method. Finally, we have used various numerical test functions along with their fractal patterns to show the utility of the proposed method. These patterns support the numerical results and explain the compactness regarding the convergence, divergence and stability of the methods to different roots.


Sign in / Sign up

Export Citation Format

Share Document