Optimized hardware architecture for implementing IEEE 754 standard double precision floating point adder/subtractor

Author(s):  
Atul Rahman ◽  
Abdullah-Al-Kafi ◽  
Mr. Khalid ◽  
A.T.M. Saiful Islam ◽  
Mahmudur Rahman
2019 ◽  
Vol 8 (2S11) ◽  
pp. 2990-2993

Duplication of the coasting element numbers is the big activity in automated signal handling. So the exhibition of drifting problem multipliers count on a primary undertaking in any computerized plan. Coasting factor numbers are spoken to utilizing IEEE 754 modern day in single precision(32-bits), Double precision(sixty four-bits) and Quadruple precision(128-bits) organizations. Augmentation of those coasting component numbers can be completed via using Vedic generation. Vedic arithmetic encompass sixteen wonderful calculations or Sutras. Urdhva Triyagbhyam Sutra is most usually applied for growth of twofold numbers. This paper indicates the compare of tough work finished via exceptional specialists in the direction of the plan of IEEE 754 ultra-modern-day unmarried accuracy skimming thing multiplier the usage of Vedic technological statistics.


Author(s):  
Lili Gao ◽  
Fangyu Zheng ◽  
Rong Wei ◽  
Jiankuo Dong ◽  
Niall Emmart ◽  
...  

2021 ◽  
Author(s):  
Sam Hatfield ◽  
Kristian Mogensen ◽  
Peter Dueben ◽  
Nils Wedi ◽  
Michail Diamantakis

<p>Earth-System models traditionally use double-precision, 64 bit floating-point numbers to perform arithmetic. According to orthodoxy, we must use such a relatively high level of precision in order to minimise the potential impact of rounding errors on the physical fidelity of the model. However, given the inherently imperfect formulation of our models, and the computational benefits of lower precision arithmetic, we must question this orthodoxy. At ECMWF, a single-precision, 32 bit variant of the atmospheric model IFS has been undergoing rigorous testing in preparation for operations for around 5 years. The single-precision simulations have been found to have effectively the same forecast skill as the double-precision simulations while finishing in 40% less time, thanks to the memory and cache benefits of single-precision numbers. Following these positive results, other modelling groups are now also considering single-precision as a way to accelerate their simulations.</p><p>In this presentation I will present the rationale behind the move to lower-precision floating-point arithmetic and up-to-date results from the single-precision atmospheric model at ECMWF, which will be operational imminently. I will then provide an update on the development of the single-precision ocean component at ECMWF, based on the NEMO ocean model, including a verification of quarter-degree simulations. I will also present new results from running ECMWF's coupled atmosphere-ocean-sea-ice-wave forecasting system entirely with single-precision. Finally I will discuss the feasibility of even lower levels of precision, like half-precision, which are now becoming available through GPU- and ARM-based systems such as Summit and Fugaku, respectively. The use of reduced-precision floating-point arithmetic will be an essential consideration for developing high-resolution, storm-resolving Earth-System models.</p>


2016 ◽  
Vol 5 (2) ◽  
pp. 135-145
Author(s):  
Aparna C V ◽  
Mary Joseph

Sign in / Sign up

Export Citation Format

Share Document