Sigmoid based Adaptive Noise Estimation Method for Speech Intelligibility Improvement

Author(s):  
Gurinderjit Singh ◽  
Maneesh Kumar Singh
2012 ◽  
Vol E95-B (4) ◽  
pp. 1076-1084 ◽  
Author(s):  
Janne J. LEHTOMÄKI ◽  
Risto VUOHTONIEMI ◽  
Kenta UMEBAYASHI ◽  
Juha-Pekka MÄKELÄ

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1878
Author(s):  
Yi Zhou ◽  
Haiping Wang ◽  
Yijing Chu ◽  
Hongqing Liu

The use of multiple spatially distributed microphones allows performing spatial filtering along with conventional temporal filtering, which can better reject the interference signals, leading to an overall improvement of the speech quality. In this paper, we propose a novel dual-microphone generalized sidelobe canceller (GSC) algorithm assisted by a bone-conduction (BC) sensor for speech enhancement, which is named BC-assisted GSC (BCA-GSC) algorithm. The BC sensor is relatively insensitive to the ambient noise compared to the conventional air-conduction (AC) microphone. Hence, BC speech can be analyzed to generate very accurate voice activity detection (VAD), even in a high noise environment. The proposed algorithm incorporates the VAD information obtained by the BC speech into the adaptive blocking matrix (ABM) and adaptive noise canceller (ANC) in GSC. By using VAD to control ABM and combining VAD with signal-to-interference ratio (SIR) to control ANC, the proposed method could suppress interferences and improve the overall performance of GSC significantly. It is verified by experiments that the proposed GSC system not only improves speech quality remarkably but also boosts speech intelligibility.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 339 ◽  
Author(s):  
Yongsong Li ◽  
Zhengzhou Li ◽  
Kai Wei ◽  
Weiqi Xiong ◽  
Jiangpeng Yu ◽  
...  

Noise estimation for image sensor is a key technique in many image pre-processing applications such as blind de-noising. The existing noise estimation methods for additive white Gaussian noise (AWGN) and Poisson-Gaussian noise (PGN) may underestimate or overestimate the noise level in the situation of a heavy textured scene image. To cope with this problem, a novel homogenous block-based noise estimation method is proposed to calculate these noises in this paper. Initially, the noisy image is transformed into the map of local gray statistic entropy (LGSE), and the weakly textured image blocks can be selected with several biggest LGSE values in a descending order. Then, the Haar wavelet-based local median absolute deviation (HLMAD) is presented to compute the local variance of these selected homogenous blocks. After that, the noise parameters can be estimated accurately by applying the maximum likelihood estimation (MLE) to analyze the local mean and variance of selected blocks. Extensive experiments on synthesized noised images are induced and the experimental results show that the proposed method could not only more accurately estimate the noise of various scene images with different noise levels than the compared state-of-the-art methods, but also promote the performance of the blind de-noising algorithm.


2017 ◽  
Vol 118 (10) ◽  
Author(s):  
Stefano Pirandola ◽  
Cosmo Lupo

Sign in / Sign up

Export Citation Format

Share Document