The acyclic coloring of the Corona product and Edge corona product of special graphs

Author(s):  
Qiqi Lu ◽  
Shuangliang Tian ◽  
Lizhen Peng
2018 ◽  
Vol 1008 ◽  
pp. 012053
Author(s):  
Risan Nur Santi ◽  
Ika Hesti Agustin ◽  
Dafik ◽  
Ridho Alfarisi

Author(s):  
Dr. S. Nagarajan ◽  
◽  
G. Kayalvizhi ◽  
G. Priyadharsini ◽  
◽  
...  

In this paper we derive HF index of some graph operations containing join, Cartesian Product, Corona Product of graphs and compute the Y index of new operations of graphs related to the join of graphs.


Author(s):  
Nurma Ariska Sutardji ◽  
Liliek Susilowati ◽  
Utami Dyah Purwati

The strong local metric dimension is the development result of a strong metric dimension study, one of the study topics in graph theory. Some of graphs that have been discovered about strong local metric dimension are path graph, star graph, complete graph, cycle graphs, and the result corona product graph. In the previous study have been built about strong local metric dimensions of corona product graph. The purpose of this research is to determine the strong local metric dimension of cartesian product graph between any connected graph G and H, denoted by dimsl (G x H). In this research, local metric dimension of G x H is influenced by local strong metric dimension of graph G and local strong metric dimension of graph H. Graph G and graph H has at least two order.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


Author(s):  
Debajyoti Mondal ◽  
Rahnuma Islam Nishat ◽  
Md. Saidur Rahman ◽  
Sue Whitesides
Keyword(s):  

2020 ◽  
Vol 12 (06) ◽  
pp. 2050083
Author(s):  
I. Tarawneh ◽  
R. Hasni ◽  
A. Ahmad ◽  
G. C. Lau ◽  
S. M. Lee

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text], respectively. An edge irregular [Formula: see text]-labeling of [Formula: see text] is a labeling of [Formula: see text] with labels from the set [Formula: see text] in such a way that for any two different edges [Formula: see text] and [Formula: see text], their weights [Formula: see text] and [Formula: see text] are distinct. The weight of an edge [Formula: see text] in [Formula: see text] is the sum of the labels of the end vertices [Formula: see text] and [Formula: see text]. The minimum [Formula: see text] for which the graph [Formula: see text] has an edge irregular [Formula: see text]-labeling is called the edge irregularity strength of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the exact value of edge irregularity strength of corona product of graphs with cycle.


2018 ◽  
Vol 1008 ◽  
pp. 012040 ◽  
Author(s):  
Ridho Alfarisi ◽  
Dafik ◽  
Slamin ◽  
I. H. Agustin ◽  
A. I. Kristiana

Sign in / Sign up

Export Citation Format

Share Document