scholarly journals Joins, coronas and their vertex-edge Wiener polynomials

2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.

2020 ◽  
Vol 30 (1) ◽  
pp. 1-14
Author(s):  
M. Azari ◽  
◽  
A. Iranmanesh ◽  

The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 541-549
Author(s):  
Abolghasem Soltani ◽  
Ali Iranmanesh

Let G be a simple connected graph. The Wiener index of G is the sum of all distances between vertices of G. Whereas, the edge Wiener index of G is defined as the sum of distances between all pairs of edges of G where the distance between the edges f and g in E(G) is defined as the distance between the vertices f and g in the line graph of G. In this paper we will describe a new method for calculating the edge Wiener index. Then find this index for the triangular graphs. Also, we obtain an explicit formula for the Wiener index of the Cartesian product of two graphs using the group automorphisms of graphs.


Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


10.37236/3508 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Ashkan Nikseresht ◽  
Zahra Sepasdar

In this article we state a relation between the Kirchhoff and Wiener indices of a simple connected graph $G$ and the Kirchhoff and Wiener indices of those subgraphs of $G$ which are induced by its blocks. Then as an application, we define a composition of a rooted tree $T$ and a graph $G$ and calculate its Kirchhoff index in terms of parameters of $T$ and $G$. Finally, we present an algorithm for computing the resistance distances and the Kirchhoff index and a similar one for computing the weighted distances and the Wiener index of a graph. These algorithms are asymptotically faster than the previously known algorithms, on graphs in which the order of the subgraphs induced by blocks is small with respect to the order of the graph.


Author(s):  
Bommanahal Basavanagoud ◽  
Shreekant Patil

The modified second multiplicative Zagreb index of a connected graph G, denoted by $\prod_{2}^{*}(G)$, is defined as $\prod_{2}^{*}(G)=\prod \limits_{uv\in E(G)}[d_{G}(u)+d_{G}(v)]^{[d_{G}(u)+d_{G}(v)]}$ where $d_{G}(z)$ is the degree of a vertex z in G. In this paper, we present some upper bounds for the modified second multiplicative Zagreb index of graph operations such as union, join, Cartesian product, composition and corona product of graphs are derived.The modified second multiplicative Zagreb index of aconnected graph , denoted by , is defined as where is the degree of avertex in . In this paper, we present some upper bounds for themodified second multiplicative Zagreb index of graph operations such as union,join, Cartesian product, composition and corona product of graphs are derived.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


2020 ◽  
Vol 13 (5) ◽  
pp. 1231-1240
Author(s):  
Büşra Aydın ◽  
Nihat Akgüneş ◽  
İsmail Naci Cangül

Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathematical chemistry due to their time and money saving applications. The Wiener index is one of these indices which is equal to the sum of distances between all pairs of vertices in a connected graph. The graph over the nite dot product of monogenic semigroups has recently been dened and in this paper, some results on the Wiener index of the dot product graph over monogenic semigroups are given.


2021 ◽  
pp. 2142005
Author(s):  
Xiang Qin ◽  
Yanhua Zhao ◽  
Baoyindureng Wu

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances of all pairs of vertices in [Formula: see text]. In this paper, we show that for any even positive integer [Formula: see text], and [Formula: see text], if [Formula: see text] is a [Formula: see text]-connected graph of order [Formula: see text], then [Formula: see text], where [Formula: see text] is the [Formula: see text]th power of a graph [Formula: see text]. This partially answers an old problem of Gutman and Zhang.


Author(s):  
Hilal A. Ganie ◽  
Abdollah Alhevaz ◽  
Maryam Baghipur

In this paper, we study the generalized distance matrix [Formula: see text] assigned to simple connected graph [Formula: see text], which is the convex combinations of Tr[Formula: see text] and [Formula: see text] and defined as [Formula: see text] where [Formula: see text] and Tr[Formula: see text] denote the distance matrix and diagonal matrix of the vertex transmissions of a simple connected graph [Formula: see text], respectively. Denote with [Formula: see text], the generalized distance eigenvalues of [Formula: see text]. For [Formula: see text], let [Formula: see text] and [Formula: see text] be, respectively, the sum of [Formula: see text]-largest generalized distance eigenvalues and the sum of [Formula: see text]-smallest generalized distance eigenvalues of [Formula: see text]. We obtain bounds for [Formula: see text] and [Formula: see text] in terms of the order [Formula: see text], the Wiener index [Formula: see text] and parameter [Formula: see text]. For a graph [Formula: see text] of diameter 2, we establish a relationship between the [Formula: see text] and the sum of [Formula: see text]-largest generalized adjacency eigenvalues of the complement [Formula: see text]. We characterize the connected bipartite graph and the connected graphs with given independence number that attains the minimum value for [Formula: see text]. We also obtain some bounds for the graph invariants [Formula: see text] and [Formula: see text].


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 637-648 ◽  
Author(s):  
Rundan Xing ◽  
Bo Zhou

The Wiener index W(G) of a connected graph G is defined as the sum of distances between all unordered pairs of vertices of G. As a variation of the Wiener index, the reverse Wiener index of G is defined as ?(G) = ? n(n ? 1)d ? W(G), where n is the number of vertices, and d is the diameter of G. It is known that the star is the unique n-vertex tree with the smallest reverse Wiener index. We now determine the second and the third smallest reverse Wiener indices of n-vertex trees, and characterize the trees whose reverse Wiener indices attain these values for n ? 5.


Sign in / Sign up

Export Citation Format

Share Document