A Survey on Various Fabric Defect Detection Methods

Author(s):  
Jacintha ◽  
S. karthikeyan
2020 ◽  
pp. 004051752092860 ◽  
Author(s):  
Junfeng Jing ◽  
Zhen Wang ◽  
Matthias Rätsch ◽  
Huanhuan Zhang

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chao Li ◽  
Jun Li ◽  
Yafei Li ◽  
Lingmin He ◽  
Xiaokang Fu ◽  
...  

Defects in the textile manufacturing process lead to a great waste of resources and further affect the quality of textile products. Automated quality guarantee of textile fabric materials is one of the most important and demanding computer vision tasks in textile smart manufacturing. This survey presents a thorough overview of algorithms for fabric defect detection. First, this review briefly introduces the importance and inevitability of fabric defect detection towards the era of manufacturing of artificial intelligence. Second, defect detection methods are categorized into traditional algorithms and learning-based algorithms, and traditional algorithms are further categorized into statistical, structural, spectral, and model-based algorithms. The learning-based algorithms are further divided into conventional machine learning algorithms and deep learning algorithms which are very popular recently. A systematic literature review on these methods is present. Thirdly, the deployments of fabric defect detection algorithms are discussed in this study. This paper provides a reference for researchers and engineers on fabric defect detection in textile manufacturing.


2021 ◽  
Vol 16 ◽  
pp. 155892502110083
Author(s):  
Shaojun Song ◽  
Junfeng Jing ◽  
Yanqing Huang ◽  
Mingyang Shi

The productivity of textile industry is positively correlated with the efficiency of fabric defect detection. Traditional manual detection methods have gradually been replaced by deep learning algorithms based on cloud computing due to the low accuracy and high cost of manual methods. Nonetheless, these cloud computing-based methods are still suboptimal due to the data transmission latency between the end devices and the cloud. To facilitate defect detection with more efficiency, a low-latency, low power consumption, easy upgrade, and automatical visual inspection system with the help of edge computing are proposed in this work. Firstly, the method uses EfficientDet-D0 as the detection algorithm, integrating the advantages of lightweight and scalable and can suit the resource-constrained edge device. Secondly, we performed data augmentations on five fabric datasets and verified the adaptability of the model in different types of fabrics. Finally, we transplanted the trained model to the edge device NVIDIA Jetson TX2 and optimized the model with TensorRT to make it detection faster. The performance of the proposed method is evaluated in five fabric datasets. The detection speed is up to 22.7 frame per second (FPS) on the edge device Jetson TX2. Compared with the cloud-based method, the response time is reduced by 2.5 times, with the capability of real-time industrial defect detection.


2011 ◽  
Vol 460-461 ◽  
pp. 617-620
Author(s):  
Xiu Chen Wang

Aiming at time-consuming and ineffective problem of image window division in fabric defect detection, this paper proposes a new adaptive division method after a large number of experiments. This method can quickly and exactly recognize defect feature. Firstly, a division model on adaptive window is established, secondly, the formula to anticipate generally situation of fabric image is given according to the peaks and valleys change in the model, and methods to calculate the division size and position of adaptive window are given. Finally, we conclude that the algorithm in this paper can quickly and simply select the size and position of window division according to actual situation of different fabric images, and the time of image analysis is shortened and the recognition efficiency is improved.


Sign in / Sign up

Export Citation Format

Share Document