scholarly journals Inertial Sensor Aided mmWave Beam Tracking to Support Cooperative Autonomous Driving

Author(s):  
Mattia Brambilla ◽  
Monica Nicoli ◽  
Sergio Savaresi ◽  
Umberto Spagnolini
Author(s):  
A. Javanmard-Gh. ◽  
D. Iwaszczuk ◽  
S. Roth

Abstract. Having a good estimate of the position and orientation of a mobile agent is essential for many application domains such as robotics, autonomous driving, and virtual and augmented reality. In particular, when using LiDAR and IMU sensors as the inputs, most existing methods still use classical filter-based fusion methods to achieve this task. In this work, we propose DeepLIO, a modular, end-to-end learning-based fusion framework for odometry estimation using LiDAR and IMU sensors. For this task, our network learns an appropriate fusion function by considering different modalities of its input latent feature vectors. We also formulate a loss function, where we combine both global and local pose information over an input sequence to improve the accuracy of the network predictions. Furthermore, we design three sub-networks with different modules and architectures derived from DeepLIO to analyze the effect of each sensory input on the task of odometry estimation. Experiments on the benchmark dataset demonstrate that DeepLIO outperforms existing learning-based and model-based methods regarding orientation estimation and shows a marginal position accuracy difference.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Kun Jiang ◽  
Yunlong Wang ◽  
Shengjie Kou ◽  
Diange Yang
Keyword(s):  

2013 ◽  
Vol 133 (9) ◽  
pp. 595-598
Author(s):  
Kenji SUZUKI ◽  
Hisaaki ISHIDA ◽  
Hirofumi INOSE ◽  
Rui KOBAYASHI
Keyword(s):  

2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


Sign in / Sign up

Export Citation Format

Share Document