The Study of Short-Range Wireless Power Transfer at Mutual Rotation of System Elements

Author(s):  
Igor B. Shirokov ◽  
Igor V. Serdyuk ◽  
Andrey A. Azarov ◽  
Elena I. Shirokova
2017 ◽  
Vol 23 (11) ◽  
pp. 11462-11466
Author(s):  
Khairul Anuar Mohamad ◽  
Chia Ek Sel ◽  
Hoh Hang Tak ◽  
Afishah Alias ◽  
Ahmad Razani Haron ◽  
...  

2019 ◽  
Vol 61 (5) ◽  
pp. 1216-1220
Author(s):  
Joo‐Hwan Lim ◽  
Wan‐Su Kim ◽  
Nhut‐Tan Doan ◽  
Ngoc‐Duy‐Hien Lai ◽  
Tan‐Binh Ngo ◽  
...  

2021 ◽  
Vol 7 ◽  
pp. e567
Author(s):  
Seung-Mok Lee

As the necessity of wireless charging to support the popularization of electric vehicles (EVs) emerges, the development of a wireless power transfer (WPT) system for EV wireless charging is rapidly progressing. The WPT system requires alignment between the transmitter coils installed on the parking lot floor and the receiver coils in the vehicle. To automatically align the two sets of coils, the WPT system needs a localization technology that can precisely estimate the vehicle’s pose in real time. This paper proposes a novel short-range precise localization method based on ultrawideband (UWB) modules for application to WPT systems. The UWB module is widely used as a localization sensor because it has a high accuracy while using low power. In this paper, the minimum number of UWB modules consisting of two UWB anchors and two UWB tags that can determine the vehicle’s pose is derived through mathematical analysis. The proposed localization algorithm determines the vehicle’s initial pose by globally optimizing the collected UWB distance measurements and estimates the vehicle’s pose by fusing the vehicle’s wheel odometry data and the UWB distance measurements. To verify the performance of the proposed UWB-based localization method, we perform various simulations and real vehicle-based experiments.


Sign in / Sign up

Export Citation Format

Share Document