Application Data for Electricity Load Forecasting Models

Author(s):  
Sooppasek Katruksa ◽  
Somchat Jiriwibhakorn
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2467 ◽  
Author(s):  
Kailai Ni ◽  
Jianzhou Wang ◽  
Guangyu Tang ◽  
Danxiang Wei

Electricity load forecasting plays an essential role in improving the management efficiency of power generation systems. A large number of load forecasting models aiming at promoting the forecasting effectiveness have been put forward in the past. However, many traditional models have no consideration for the significance of data preprocessing and the constraints of individual forecasting models. Moreover, most of them only focus on the forecasting accuracy but ignore the forecasting stability, resulting in nonoptimal performance in practical applications. This paper presents a novel hybrid model that combines an advanced data preprocessing strategy, a deep neural network, and an avant-garde multi-objective optimization algorithm, overcoming the defects of traditional models and thus improving the forecasting performance effectively. In order to evaluate the validity of the proposed hybrid model, the electricity load data sampled in 30-min intervals from Queensland, Australia are used as a case to study. The experiments show that the new proposed model is obviously superior to all other traditional models. Furthermore, it provides an effective technical forecasting means for smart grid management.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongyi Hu ◽  
Yukun Bao ◽  
Tao Xiong

Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.


Author(s):  
Nguyen Xuan Tung ◽  
Nguyen Quang Dat ◽  
Tran Ngoc Thang ◽  
Vijender Kumar Solanki ◽  
Nguyen Thi Ngoc Anh

Sign in / Sign up

Export Citation Format

Share Document