Load balancing Based Active Monitoring Load Balancer In Cloud Computing

Author(s):  
Maha Zedan ◽  
Gamal Attiya ◽  
Nawal El-Fishawy
Author(s):  
Noha G. Elnagar ◽  
Ghada F. Elkabbany ◽  
Amr A. Al-Awamry ◽  
Mohamed B. Abdelhalim

<span lang="EN-US">Load balancing is crucial to ensure scalability, reliability, minimize response time, and processing time and maximize resource utilization in cloud computing. However, the load fluctuation accompanied with the distribution of a huge number of requests among a set of virtual machines (VMs) is challenging and needs effective and practical load balancers. In this work, a two listed throttled load balancer (TLT-LB) algorithm is proposed and further simulated using the CloudAnalyst simulator. The TLT-LB algorithm is based on the modification of the conventional TLB algorithm to improve the distribution of the tasks between different VMs. The performance of the TLT-LB algorithm compared to the TLB, round robin (RR), and active monitoring load balancer (AMLB) algorithms has been evaluated using two different configurations. Interestingly, the TLT-LB significantly balances the load between the VMs by reducing the loading gap between the heaviest loaded and the lightest loaded VMs to be 6.45% compared to 68.55% for the TLB and AMLB algorithms. Furthermore, the TLT-LB algorithm considerably reduces the average response time and processing time compared to the TLB, RR, and AMLB algorithms.</span>


Author(s):  
K. Balaji, Et. al.

The evolution of IT led Cloud computing technology emerge as a new prototype in providing the services to its users on rented basis at any time or place. Considering the flexibility of cloud services, innumerable organizations switched their businesses to the cloud technology by setting up more data centers. Nevertheless, it has become mandatory to provide profitable execution of tasks and appropriate  resource utilization. A few approaches were outlined in literature to enhance performance, job scheduling, storage resources, QoS and load distribution. Load balancing concept permits data centers to avert over-loading or under-loading in virtual machines that as such is an issue in cloud computing domain. Consequently, it necessitate the researchers to layout and apply a proper load balancer for cloud environment. The respective study represents a view of problems and threats faced by the current load balancing techniques and make the researchers find more efficient algorithms.


Author(s):  
K. Balaji , Et. al.

The evolution of IT led Cloud computing technology emerge as a new prototype in providing the services to its users on rented basis at any time or place. Considering the flexibility of cloud services, innumerable organizations switched their businesses to the cloud technology by setting up more data centers. Nevertheless, it has become mandatory to provide profitable execution of tasks and appropriate  resource utilization. A few approaches were outlined in literature to enhance performance, job scheduling, storage resources, QoS and load distribution. Load balancing concept permits data centers to avert over-loading or under-loading in virtual machines that as such is an issue in cloud computing domain. Consequently, it necessitate the researchers to layout and apply a proper load balancer for cloud environment. The respective study represents a view of problems and threats faced by the current load balancing techniques and make the researchers find more efficient algorithms.


2018 ◽  
Author(s):  
Dongsheng Zhang

Web traffic is highly jittery and unpredictable. Load balancer plays a significant role in mitigating the uncertainty in web environments. With the growing adoption of cloud computing infrastructure, software load balancer becomes more common in recent years. Current load balancer services distribute the network requests based on the number of network connections to the backend servers. However, the load balancing algorithm fails to work when other resources such as CPU or memory in a backend server saturates. We experimented and discussed the resilience evaluation and enhancement of container-based software load balancer services in cloud computing environments. We proposed a pluggable framework that can dynamically adjust the weight assigned to each backend server based on real-time monitoring metrics.


2020 ◽  
Vol 25 (6) ◽  
pp. 771-782
Author(s):  
Gutta Sridevi ◽  
Midhunchakkravarthy

As the size of the cloud-based applications and its tasks are increasing exponentially, it is necessary to estimate the load balancing metrics in the real-time cloud computing environments. Hybrid load balancing framework play a vital role in the cloud-based applications and tasks monitoring and resource allocation. Most of the conventional load balancing metrics are dependent on limited number of cloud metrics and type of virtual machines. Also, these models require high computational memory and time on large number of tasks. In this paper, an advanced multi-level statistical load balancer-based parameters estimation model is designed and implemented on the real-time cloud computing environment. In this model, a novel statistical load balancing data collector is used to find the best metrics for the load balance computation. In this model, different types of tasks are simulated under different virtual machine types such as small, medium and large instances. Experimental results show that the proposed multi-level based statistical load balancing collector has better efficiency than the conventional models in terms of memory utilization, CPU utilization, runtime and reliability are concerned.


Sign in / Sign up

Export Citation Format

Share Document