Improvement and Implementation of Genetic Algorithm for Location Scheme in Location-Routing Problem

Author(s):  
Hanlin Yu ◽  
Yabo Luo
2019 ◽  
Vol 29 (3) ◽  
pp. 173-187
Author(s):  
Alena Rybičková ◽  
Denisa Mocková ◽  
Dušan Teichmann

2014 ◽  
Vol 543-547 ◽  
pp. 2842-2845 ◽  
Author(s):  
Gai Li Du ◽  
Nian Xue

This paper analysis the basic principles of the genetic algorithm (GA) and simulated annealing algorithm (SA) thoroughly. According to the characteristics of mutil-objective location routing problem, the paper designs the hybrid genetic algorithm in various components, and simulate achieved the GSAA (Genetic Simulated Annealing Algorithm).Which architecture makes it possible to search the solution space easily and effectively without overpass computation. It avoids effectively the defects of premature convergence in traditional genetic algorithm, and enhances the algorithms global convergence. Also it improves the algorithms convergence rate to some extent by using the accelerating fitness function. Still, after comparing with GA and SA, the results show that the proposed Genetic Simulated Annealing Algorithm has better search ability. And the emulation experiments show that this method is valid and practicable.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Keliang Chang ◽  
Hong Zhou ◽  
Guijing Chen ◽  
Huiqin Chen

The relief distributions after large disasters play an important role for rescue works. After disasters there is a high degree of uncertainty, such as the demands of disaster points and the damage of paths. The demands of affected points and the velocities between two points on the paths are uncertain in this article, and the robust optimization method is applied to deal with the uncertain parameters. This paper proposes a nonlinear location routing problem with half-time windows and with three objectives. The affected points can be visited more than one time. The goals are the total costs of the transportation, the satisfaction rates of disaster nodes, and the path transport capacities which are denoted by vehicle velocities. Finally, the genetic algorithm is applied to solve a number of numerical examples, and the results show that the genetic algorithm is very stable and effective for this problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yong Wang ◽  
Yaoyao Sun ◽  
Xiangyang Guan ◽  
Yanyong Guo

In this work, a two-echelon location-routing problem with time windows and transportation resource sharing (2E-LRPTWTRS) is solved by selecting facility locations and optimizing two-echelon vehicle routes. The optimal solutions improve the efficiency of a logistics network based on the geographical distribution and service time windows of logistics facilities and customers. Furthermore, resource utilization is maximized by enabling resource sharing strategies within and among different logistics facilities simultaneously. The 2E-LRPTWTRS is formulated as a biobjective optimization model, and obtaining the smallest number of required delivery vehicles and the minimum total operating cost are the two objective functions. A two-stage hybrid algorithm composed of k-means clustering and extended multiobjective particle swarm optimization algorithm is proposed for 2E-LRPTWTRS optimization. A self-adaptive mechanism of flight parameters is introduced and adopted during the iterative process to balance the evolution of particles and improve the efficiency of the two-stage hybrid algorithm. Moreover, 20 small-scale instances are used for an algorithm comparison with multiobjective genetic algorithm and nondominated sorting genetic algorithm-II, and the solutions demonstrate the superiority of the proposed algorithm in optimizing logistics networks. The proposed optimization model and hybrid algorithm are tested by employing a real-world case of 2E-LRPTWTRS in Chongqing, China, and the optimization results verify the positive role of the developed model and algorithm in improving logistics efficiency, reducing operating cost, and saving transportation resources in the operations of two-echelon logistics networks.


Sign in / Sign up

Export Citation Format

Share Document